Dienst van SURF
© 2025 SURF
“Duurzaamheid”, het is één van de termen die tegenwoordig niet meer weg te denken zijn uit het nieuws, de reclames en vele netwerkbijeenkomsten. Duurzaam ondernemen, duurzaam wonen, duurzame energievoorziening, duurzame producten, gaat er een dag aan ons voorbij dat we niet worden herinnerd aan het belang van een duurzame levensstijl om er voor te zorgen dat deze wereld ook voor onze kinderen en achterkleinkinderen nog een fijne natuurlijke wereld mag zijn om in te leven? Op het gebied van duurzame materialen kregen zo biopolymeren en gerecyclede kunststoffen de aandacht. In dit boekje worden biopolymeren belicht. Daarbij wordt vooral ook aandacht besteed aan de discussie of biopolymeren nou wel echt zo milieuvriendelijk en duurzaam zijn als dat ze lijken. Dit boekje is opgesteld om ontwerpers en bedrijven die zich bezig houden met productontwikkeling praktische (eerste) informatie te bieden over biopolymeren. Naast definities, voor- en nadelen, technieken, toepassingsgebieden, soorten, eigenschappen en regelgeving zal ook een roadmap gegeven worden die inzicht geeft in welke biopolymeren er al zijn en welke er nog verwacht kunnen worden.
MULTIFILE
In het dagelijks leven hebben we voortdurend met verschillende plastics te maken. Overal om ons heen komen we plastics tegen. Denk bijvoorbeeld aan verpakkingsmaterialen, flessen, flacons, kratten, tapijten en plastic draagtassen. Een leven zonder kunststoffen is in onze huidige maatschappij vrijwel ondenkbaar geworden. In 2014 werd er volgens Plastics Europe [1] wereldwijd maar liefst 311.000.000 ton aan kunststoffen geproduceerd, in 1950 was dit nog slechts 1.700.000 ton. Vanaf 1950 stijgt de wereldwijde productie van kunststoffen met gemiddeld 9% per jaar. Bij de huidige productiecapaciteit komt dit volgens Plastics Europe neer op gemiddeld 40 kg/jaar per hoofd van de wereldbevolking! Naar verwachting zal het gebruik van plastics verder toenemen naar gemiddeld 87 kg/jaar per hoofd van de wereldbevolking in het jaar 2050. In Nederland ligt het verbruik momenteel op gemiddeld 126 kg per inwoner. Maar volgens prognoses van VLEEM (Very Long Term Energy Environment Model) [2] zal dit groeien naar gemiddeld 220 kg per inwoner in 2050!! De toenemende vraag naar plastics wordt mede veroorzaakt omdat plastics op zich een gemakkelijk te verwerken materiaal is. Plastics zijn relatief goedkoop, hebben een lage specifieke dichtheid (t.o.v. bijvoorbeeld metalen), en zijn snel en gemakkelijk verwerkbaar.
The catalytic conversion of glycerol to aromatics (GTA, e.g., benzene, toluene, and xylenes, BTX) over a shaped H-ZSM-5/Al2O3 (60/40 wt%) catalyst was investigated in a continuous fixed-bed reactor to study the addition of the Al2O3 binder in the catalyst formulation on catalyst performance. The experiments were performed under N2 at 550 °C, a WHSV of glycerol (pure) of 1 h−1, and atmospheric pressure. The spent H-ZSM-5/Al2O3 catalysts were reused after an oxidative regeneration at 680 °C and in total 5 reaction-regeneration cycles were performed. Catalyst characterization studies show that the addition of the Al2O3 binder does not affect the surface area and crystallinity of the formulation, but increases the total pore volume (mesopores in particular) and total acidity (Lewis acidity in particular). The H-ZSM-5/Al2O3 (60/40 wt%) catalyst shows a considerably prolonged catalyst life-time (8.5 vs. 6.5 h for H-ZSM-5), resulting in a significant increase in the total BTX productivity (710 vs. 556 mg g−1 H-ZSM-5). Besides, the addition of the Al2O3 binder retards irreversible deactivation. For instance, after 3 regenerations, catalyst performance is comparable to the fresh one. However, after 4 regenerations, some irreversible catalyst deactivation occurs, associated with a reduction in total pore volume, crystallinity, and acidity (Brønsted acidity in particular), and meso-porosity of the Al2O3 binder. This study shows that both the stability and reusability of H-ZSM-5-based catalysts for GTA are remarkably enhanced when using a suitable binder.
Verduurzaming van de land- en tuinbouw is een actueel thema. In de zoektocht naar een economische en milieuvriendelijke manier om landbouwchemicaliën te verspreiden op het veld, zijn zaadcoatings populair. Landbouwchemicaliën zijn essentieel ter bescherming van gewassen en om opbrengsten te maximaliseren. Zaadcoatings vormen een dun film laagje om het zaad waarin groeistimulerende en ziektewerende substanties verwerkt worden. De huidige coatings zijn gemaakt uit synthetische polymeren die echter gebaseerd zijn op fossiele grondstoffen en aanleiding geven tot vervuilende microplastics bij degradatie. Biopolymeren kunnen een alternatief bieden, maar tot op heden is het niet gelukt om de synthetische polymeren te evenaren qua eigenschappen. Vooral het vinden van een juiste balans tussen stofvorming bij frictie van de zaden (“dust-off”) en het vloeivermogen van de zaden, is een uitdaging bij gebruik van biopolymeren. Het doel van het project is om een eenvoudig vernetbare vorm van poly(asparaginezuur), eventueel in aanwezigheid van cellulose fibrilen, te testen als biogebaseerde en biodegradeerbare component in watergedragen zaadcoating formulaties. Er zal onderzocht worden wat deze alternatieve materialen bieden qua toepassingsmogelijkheden in de zaadcoatingsindustrie.