Dienst van SURF
© 2025 SURF
Abstract: Existing frailty models have enhanced research and practice; however, none of the models accounts for the perspective of older adults upon defining and operationalizing frailty. We aim to propose a mixed conceptual model that builds on the integral model while accounting for older adults’ perceptions and lived experiences of frailty. We conducted a traditional literature review to address frailty attributes, risk factors, consequences, perceptions, and lived experiences of older adults with frailty. Frailty attributes are vulnerability/susceptibility, aging, dynamic, complex, physical, psychological, and social. Frailty perceptions and lived experience themes/subthemes are refusing frailty labeling, being labeled “by others” as compared to “self-labeling”, from the perception of being frail towards acting as being frail, positive self-image, skepticism about frailty screening, communicating the term “frail”, and negative and positive impacts and experiences of frailty. Frailty risk factors are classified into socio-demographic, biological, physical, psychological/cognitive, behavioral, and situational/environmental factors. The consequences of frailty affect the individual, the caregiver/family, the healthcare sector, and society. The mixed conceptual model of frailty consists of interacting risk factors, interacting attributes surrounded by the older adult’s perception and lived experience, and interacting consequences at multiple levels. The mixed conceptual model provides a lens to qualify frailty in addition to quantifying it.
Background: Functional Capacity (FC) is a multidimensional construct within the activity domain of the International Classification of Functioning, Disability and Health framework (ICF). Functional capacity evaluations (FCEs) are assessments of work-related FC. The extent to which these work-related FC tests are associated to bio-, psycho-, or social factors is unknown. The aims of this study were to test relationships between FC tests and other ICF factors in a sample of healthy workers, and to determine the amount of statistical variance in FC tests that can be explained by these factors. Methods: A cross sectional study. The sample was comprised of 403 healthy workers who completed material handling FC tests (lifting low, overhead lifting, and carrying) and static work FC tests (overhead working and standing forward bend). The explainable variables were; six muscle strength tests; aerobic capacity test; and questionnaires regarding personal factors (age, gender, body height, body weight, and education), psychological factors (mental health, vitality, and general health perceptions), and social factors (perception of work, physical workloads, sport-, leisure time-, and work-index). A priori construct validity hypotheses were formulated and analyzed by means of correlation coefficients and regression analyses. Results: Moderate correlations were detected between material handling FC tests and muscle strength, gender, body weight, and body height. As for static work FC tests; overhead working correlated fair with aerobic capacity and handgrip strength, and low with the sport-index and perception of work. For standing forward bend FC test, all hypotheses were rejected. The regression model revealed that 61% to 62% of material handling FC tests were explained by physical factors. Five to 15% of static work FC tests were explained by physical and social factors. Conclusions: The current study revealed that, in a sample of healthy workers, material handling FC tests were related to physical factors but not to the psychosocial factors measured in this study. The construct of static work FC tests remained largely unexplained.
LINK