Dienst van SURF
© 2025 SURF
Matrix-assisted laser desorption/ionisation time of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three different processing methods for the rapid direct identification of bacteria from positive blood culture bottles were compared. In total, 101 positive aerobe BacT/ALERT bottles were included in this study. Aliquots from all bottles were used for three bacterial processing methods, i.e. the commercially available Bruker's MALDI Sepsityper kit, the commercially available Molzym's MolYsis Basic5 kit and a centrifugation/washing method. In addition, the best method was used to evaluate the possibility of MALDI application after a reduced incubation time of 7 h of Staphylococcus aureus- and Escherichia coli-spiked (1,000, 100 and 10 colony-forming units [CFU]) aerobe BacT/ALERT blood cultures. Sixty-six (65%), 51 (50.5%) and 79 (78%) bottles were identified correctly at the species level when the centrifugation/washing method, MolYsis Basic 5 and Sepsityper were used, respectively. Incorrect identification was obtained in 35 (35%), 50 (49.5%) and 22 (22%) bottles, respectively. Gram-positive cocci were correctly identified in 33/52 (64%) of the cases. However, Gram-negative rods showed a correct identification in 45/47 (96%) of all bottles when the Sepsityper kit was used. Seven hours of pre-incubation of S. aureus- and E. coli-spiked aerobe BacT/ALERT blood cultures never resulted in reliable identification with MALDI-TOF MS. Sepsityper is superior for the direct identification of microorganisms from aerobe BacT/ALERT bottles. Gram-negative pathogens show better results compared to Gram-positive bacteria. Reduced incubation followed by MALDI-TOF MS did not result in faster reliable identification.
Application of animal manure to soils results in the introduction of manure-derived bacteria and their antimicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that allows the detection of minority components of the resistome gene pool without the cost-prohibitive coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches, both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome showed strong resilience to the input of manure, as manuring did not impact the overall structure of the bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a substantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community composition. Still, specific families increased after manure application, either through the input of manure (e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the structures of the bacteriome and resistome are shaped by different factors, where the bacterial community composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.
MULTIFILE
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.
To treat microbial infections, antibiotics are life-saving but the increasing antimicrobial resistance is a World-wide problem. Therefore, there is a great need for novel antimicrobial substances. Fruit and flower anthocyanins have been recognized as promising alternatives to traditional antibiotics. How-ever, for future application as innovative alternative antibiotics, the full potential of anthocyanins should be further investigated. The antimicrobial potential of anthocyanin mixtures against different bacterial species has been demonstrated in literature. Preliminary experiments performed by our laboratories, using grape, rose and red cabbage anthocyanins against S. aureus and E. coli confirmed the antimicrobial potential of these substances. Hundreds of different anthocyanin entities have been described. However, which of these entities hold antimicrobial effects is currently unknown. Our preliminary data show that an-thocyanins extracted from grape, rose and red cabbage contain different collections of anthocyanin entities with differential antimicrobial efficacies. Our focus is on the extraction and characterization of anthocyanins from various crop residues. Grape peels are residues in the production of wine, while red rose and tulip leaves are residues in the production of tulip bulbs and regular horticulture. The presence of high-grade substances for pharmacological purposes in these crops may provide an innovative strategy to add value to other-wise invaluable crop residues. This project will be performed by the collaborative effort of our institute together with the Medi-cal Microbiology department of the University Medical Center Groningen (UMCG), 'Wijnstaete', a small-scale wine-producer (Lemelerveld) and Imenz Bioengineering (Groningen), a company that develops processes to improve the production of biobased chemicals from waste products. Within this project, we will focus on the antimicrobial efficacy of anthocyanin-mixtures from sources that are abundantly and locally available as a residual waste product. The project is part of a larger re-search effect to further characterize, modify and study the antimicrobial effects of specific anthocy-anin entities.
Worldwide, coral reefs are rapidly declining due to increased sea water temperatures and other environmental stresses (Figure 1). To counter the extinction of major coral reef building species on the island of Bonaire, the non-profit organization Reef Renewal Foundation Bonaire is restoring degraded reef sites using corals that are grown in local nurseries. In these nurseries, corals are propagated on artificial trees using fragmentation. After 6-8 months of growth in the nursery, the corals are transplanted to degraded reef sites around the island. Over the years more than 21.000 corals have been outplanted to reef restoration sites in this way. These corals show high survivorship under natural reef conditions but remain under threat by environmental disturbances, such as increased water temperatures, diseases, and competition with macroalgae. A promising intervention to increase reef persistence and resilience is to manipulate the coral-associated microbiome. At present, the composition of the microbiome in nursery-reared and outplanted corals on Bonaire is unknown. The aim of the current project is to identify and isolate naturally occurring beneficial bacteria that may stimulate the resilience of these corals. Our key objectives are: 1) to assess the presence of functionally beneficial bacteria in corals in nursery and restoration sites on Bonaire using metagenomic screening. 2) to design culture strategies to isolate these functionally beneficial bacteria. In the future, a selection of these beneficial bacteria can be applied to the corals to increase their resilience against environmental disturbances.