Dienst van SURF
© 2025 SURF
Described are the results of an investigation in the appreciation of distance learning, limited to a case study with an online lab-experiment. Together with other educational institutes and companies Fontys University of Applied Sciences participated in a number of projects in which distance learning courses were developed. Some courses have been integrated in the regular curriculum. Our study was set up to get insight into the appreciation of students for this way of learning, especially concerning online lab-experiments. By using surveys and interviews after the students accomplished either a regular course or a distance learning course on the same object we tried to get a better understanding of how students used the course and appreciated it. Also we wanted to know whether an online lab-experiment is more or less effective than a regular one. Preliminary data analyses have shown that the appreciation of an online lab-experiment is dependent on a number of items, like the educational contents of the experiment itself, the way accompanying theory is presented, possibilities of doing the experiment in an alternative way, the organization around the experiment etc. It appears also that students give serious suggestions on developing other online lab-experiments.
People tend to be hesitant toward algorithmic tools, and this aversion potentially affects how innovations in artificial intelligence (AI) are effectively implemented. Explanatory mechanisms for aversion are based on individual or structural issues but often lack reflection on real-world contexts. Our study addresses this gap through a mixed-method approach, analyzing seven cases of AI deployment and their public reception on social media and in news articles. Using the Contextual Integrity framework, we argue that most often it is not the AI technology that is perceived as problematic, but that processes related to transparency, consent, and lack of influence by individuals raise aversion. Future research into aversion should acknowledge that technologies cannot be extricated from their contexts if they aim to understand public perceptions of AI innovation.
LINK
The project focuses on sustainable travel attitude and behaviour with attention to balance, liveability, impact and climate change (as indicated above). The customer journey is approached from the consumer side and intends to shed light on the way COVID-19 has influenced (or not) the following aspects:• consumer’s understanding and appreciation of sustainability • the extent to which this understanding has influenced their attitude towards sustainable travel choices• the extent to which this change is represented in their actual and projected travel behaviour throughout the travel decision-making process • conditions that may foster a more sustainable travel behaviourThe project can be seen as a follow up to existing studies on travel intention during and post COVID-19, such as ETC’s publication on Monitoring sentiment for domestic and Intra-European travel – Wave 5, or the joint study of the European Tourism Futures Institute (ETFI – www.etfi.nl) and the Centre of Expertise in Leisure, Tourism and Hospitality (CELTH – www.celth.nl) highlighting four future scenarios for the leisure, tourism and hospitality sectors post COVID-19. The project will look beyond travel intention and will supplement existing knowledge with crucial information on the way consumers view sustainability and the extent to which they are willing to adjust their travel behaviour to aid the recovery of a more sustainable travel and tourism industry. Therefore, the report aims to generate knowledge vital for the understanding of consumer trends and the role sustainability will play in travel choices in the near future.Problem statementPlease describe which question in the (participating) industry is addressed.How has the sustainable travel attitude and behaviour in selected European source markets been influenced by the COVID-19 pandemic? Further questions to be answered:• How did the COVID-19 pandemic influence the consumer’s understanding and appreciation of sustainability?• To what extent did this understanding influence their attitude towards sustainable travel choices?• To what extent is this change represented in their actual and projected travel behaviour throughout the travel decision-making process?• What are the conditions that may foster a more sustainable travel behaviour?
De fotonica industrie groeit snel in de Brainport regio. Multinationals zoals ASML maar ook talrijke MKB bedrijven werken aan complexe optische systemen. Zij concurreren op wereldschaal met high tech Amerikaanse en Aziatische spelers. Innovatie is daarvoor van levensbelang. R&D in de sleuteltechnologieën fotonica en geavanceerde fabricagesystemen levert hiervoor de hoognodige brandstof. Zo ook in dit project, waarbij twee high tech MKB bedrijven met Fontys 3D-metaalprinten op een nieuwe en slimme manier gaan inzetten voor fotonica. Complexe optische systemen bevatten meestal meerdere optische elementen (o.a. lenzen, spiegels, diafragma’s, lichtbronnen, sensoren) die onderling in een lichtweg gerangschikt en onderling afgesteld moeten worden. Hierbij worden z.g. optische mounts gebruikt om de positie van de individuele optische elementen vast te leggen en na afstelling te fixeren. Een dergelijke afstelmethode is vaak lastig (divergerend), tijdrovend en niet stabiel over de tijd (want gebaseerd op wrijvingsfixatie). Dit project onderzoekt als oplossing een geïntegreerd monolithisch 3D geprint montagesysteem voor optische elementen, waarbij gebruik gemaakt wordt van ruimtelijk georiënteerde 3D geprinte monolithische elementen (spelings- en hysteresevrij). Hiermee wordt de insteltijd aanzienlijk gereduceerd (doelstelling: 100% --> 30%). Tevens zal de positioneernauwkeurigheid van de hierin opgenomen optische elementen gegarandeerd zijn. Tenslotte zullen er aanzienlijk minder onderdelen in het ontwerp aanwezig zijn. Als concrete en haalbare demonstrator wordt een 3D geprinte monolithische optical mount voor de lichtweg van de “Arinna” laserinterferometer van IBSPE uit Eindhoven ontwikkeld en getest. 3D geprinte optical mounts zijn nieuw voor dit netwerk, maar Fontys en aangesloten ondernemers hebben de relevante ervaring in 3D metaalprinten en fotonica. Met de aangesloten fotonica netwerken Photon Delta, DSPE en PhotonicsNL kan de opgedane kennis snel opgeschaald worden en kunnen ook andere MKB bedrijven deze innovatieve mounts voor hun supply chains gaan onderzoeken.
"Speak the Future" presents a novel test case at the intersection of scientific innovation and public engagement. Leveraging the power of real-time AI image generation, the project empowers festival participants to verbally describe their visions for a sustainable and regenerative future. These descriptions are instantly transformed into captivating imagery using SDXL Turbo, fostering collective engagement and tangible visualisation of abstract sustainability concepts. This unique interplay of speech recognition, AI, and projection technology breaks new ground in public engagement methods. The project offers valuable insights into public perceptions and aspirations for sustainability, as well as understanding the effectiveness of AI-powered visualisation and regenerative applications of AI. Ultimately, this will serve as a springboard for PhD research that will aim to understand How AI can serve as a vehicle for crafting regenerative futures? By employing real-time AI image generation, the project directly tests its effectiveness in fostering public engagement with sustainable futures. Analysing participant interaction and feedback sheds light on how AI-powered visualisation tools can enhance comprehension and engagement. Furthermore, the project fosters public understanding and appreciation of research. The interactive and accessible nature of "Speak the Future" demystifies the research process, showcasing its relevance and impact on everyday life. Moreover, by directly involving the public in co-creating visual representations of their aspirations, the project builds an emotional connection and sense of ownership, potentially leading to continued engagement and action beyond the festival setting. "Speak the Future" promises to be a groundbreaking initiative, bridging the gap between scientific innovation and public engagement in sustainability discourse. By harnessing the power of AI for collective visualisation, the project not only gathers valuable data for researchers but also empowers the public to envision and work towards a brighter, more sustainable future.