Dienst van SURF
© 2025 SURF
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
Apart from tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), a third PA appears to occur in human plasma. Its activity is initiated when appropriate triggers of the contact system are added, and the activation depends on the presence of factor XII and prekallikrein in plasma. The activity of this, so-called, contact-system dependent PA accounts for 30% of the PA activity in the dextran sulphate euglobulin fraction of plasma and was shown not to be an intrinsic property of one of the contact-system components, nor could it be inhibited by inhibitory antibodies against t-PA or u-PA. We have succeeded in identifying this third PA in dextran sulphate euglobulin fractions of human plasma. Its smallest unit (SDS-PAGE) is an inactive 110 kDa single-chain polypeptide which upon activation of the contact system is converted to a cleaved, disulphide-bridged molecule with PA activity. The native form, presumably, is an oligomer, since the apparent Mr on gel-chromatography is 600,000. The IEP is 4.8, much lower than that of t-PA and u-PA. Although the active 110 kDa polypeptide cannot be inhibited by anti-u-PA, it yet comprises a 37 kDa piece with some u-PA related antigenic determinants. However, these determinants are in a latent or cryptic form, only detectable after denaturation by SDS. The 110 kDa polypeptide is evidently not a dimer of 55 kDa u-PA or a complex of u-PA with an inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)
LINK
An analysis was made of the various possible activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction (DEF) of human plasma. scu-PA activators were detected in an assay system in which the substrate scu-PA, in physiological concentration (50 pM), was immuno-immobilized. After activation of the immobilized scu-PA for a certain period of time the activity of the generated amount of immuno-immobilized two-chain u-PA was determined with plasminogen and the chromogenic substrate S-2251. The scu-PA activator activity (scuPA-AA) in the DEF of plasmas deficient in factor XII or prekallikrein was about half of that in the DEF of normal plasma. Separation of scuPA-AA in the DEF by gel chromatography showed to major peaks, one eluting with an apparent Mr of 500,000 and the other around Mr 100,000. The former peak, which coincided with the activity peak of the kallikrein-kininogen complex, was absent in the DEF of plasma depleted of prekallikrein and therefore was identified as kallikrein. The latter peak was still present in the depleted plasma and most likely represents plasmin, because its scuPA-AA coincided with the activity peak of plasmin and could be fully inhibited by antibodies raised against human plasminogen. It is concluded that plasmin and the contact-activation factor kallikrein each contribute for about 50% to the scuPA-AA in the DEF. Compared on a molar basis, however, plasmin was found to be almost 1,000 times more effective than kallikrein, and we conclude, therefore, that in vivo plasmin is the primary activator of scu-PA and the role of the contact system is of secondary importance.
LINK
Pre-eclampsia (PE) is a common and severe pregnancy complication and is associated with substantial perinatal morbidity and mortality in mothers and infants. The disease is often characterized by a non-specific presentation which makes it challenging for physician to diagnose PE during regular pregnancy check-ups. To date, there are no diagnostic tests on the market for detection of PE early in pregnancy (first trimester). In this project, we will develop a platform to sensitively analyse calcium-binding proteins (CBPs) which will unlock the full potential of CBPs as predictive PE markers. The technology will also be applicable for other diseases (e.g., dementia and cancer) where CBPs are also known to play a key role in disease pathophysiology. We will develop with phage display antibodies that can recognize calcium binding to specific motifs in proteins. To this end we will synthesize peptide motifs with and without calcium to select antibodies that are specific for calcium bound proteins. These antibodies will be validated for their clinical use. For this goal we will use serum samples from the Improved studie (EU subsidised study) to determine if we can recognize pre-eclampsia in a very early stage. This knowledge can lead to a better treatment of pregnant women suffering from this disease and also will probably increase the well-being for the baby born and the development further in life.
The missing link in diagnostic testing for rheumatoid arthritis (RA) is an agglutination assay, easy to perform and dedicated to decentralized testing. Approximately 75% of RA patients produce autoantibodies to citrullinated proteins (ACPA), which can be detected using an agglutination-based diagnostic test. Such a diagnostic test will be cheaper, less laborious and faster than current tests and does not require sophisticated equipment. Novio Catalpa is developing this alternative test for ACPA in collaboration with Radboud University. To develop this test, specifically tagged and citrullinated nanobodies are needed, but the production is still challenging. Current methods for the production of ACPA diagnostics involve chemical synthesis, in which a variety of toxic chemicals are used in each step. The alternative assay involves nanobodies fused with RA-biomarker target entities, which can be completely produced by ‘green synthesis’ in the yeast Pichia pastoris using the expertise of HAN BioCentre. The yeast P. pastoris has proven to be able to produce nanobodies and is a fast and cost-effective platform that often results in high protein yields. Goal of the project is therefore to determine the feasibility and best green route to produce purified nanobodies tagged with citrullinated ACPA targets that can be used for developing an agglutination assay for RA. P. pastoris does not produce endogenous PAD enzymes which are needed for citrullination of the nanobodies in order to be able to use it in a RA agglutination test. Therefore, PAD enzymes from other sources need to be tested and applied. The project results will be directly used by Novio Catalpa to further develop the innovative test for RA. This project will contribute to and finally result in a single-step agglutination assay suitable for both point-of-care testing and automation in clinical laboratories.
Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.