Dienst van SURF
© 2025 SURF
Het project “In twee stappen naar een aardgasvrije en comfortabele Nederlandse woonomgeving” ontwikkelt een manier om de overstap naar aardgasvrije woningverwarming eenvoudiger, minder spannend, betrouwbaarder en beter te maken. Dat doen we door een “hybride” tussenstap, die een behoorlijke aardgasreductie en financiële besparing geeft, eenvoudig en relatief goedkoop te realiseren is, zonder onzekerheid over comfort.Eerst stond het ontwikkelen en testen van een lucht-water warmtepomp met volledige binnenopstelling centraal. Als deze ook efficiënt is bij hogere watertemperatuur, kan dezelfde warmtepomp eerst hybride worden ingezet en later volledig de warmtevraag en tapwatervraag overnemen. Bij tests bleek het vermogen echter te beperkt voor doorsnee rijtjeswoningen. Daarom zouden er voor een gasvrije woning 2 warmtepompen nodig zijn. Door eerst een airco (lucht-lucht warmtepomp) te installeren in de hoofdruimte en later de ketel te vervangen door een goed gedimensioneerde lucht-water warmtepomp met buffer, kan de overstap naar gasvrij worden gemaakt op een manier die ons in dit project voor ogen stond.Dit rapport beschrijft dit “airco hybride” concept en vergelijkt dit met een hybride lucht-water warmtepomp en met in één keer de overstap maken met één warmtepomp. De airco is veel goedkoper in aanschaf en installatie, is snel te leveren en installeren, kan koelen, en verwarmt relatief snel. Doordat de al aanwezige radiatoren minder warmte hoeven te leveren, kunnen die werken bij een lagere temperatuur. Dat maakt de lucht-water warmtepomp efficiënter, terwijl aanpassingen in het afgiftesysteem minder noodzakelijk zijn. Omdat de overstap naar een lucht-water warmtepomp pas later komt, kan men de tussentijdse ontwikkelingen benutten.Een integrale regeling is een essentieel onderdeel van het concept. In stap één (airco toevoegen) worden temperaturen en vermogens gemonitord, waardoor in stap twee (vervangen ketel door gasvrije warmtebron) de juiste configuratie kan worden gekozen, de noodzakelijke aanpassingen aan isolatie en afgiftesysteem in beeld worden gebracht, en de energiekosten en netbelasting kunnen worden berekend. Tijdens beide stappen stuurt de regeling de airco en ketel (en later de lucht-water warmtepomp) zodanig aan dat beide efficiënt draaien.Van een 3,5 kW airco is de COP gemeten bij 1,5 – 4,0 kW warmtevraag en buitentemperaturen van -10 tot +12°C. Als de airco niet hoeft te ontdooien is de COP maximaal bij 2 à 2,5 kW warmtevraag. De prestaties zijn dan vergelijkbaar met een monoblock lucht-water warmtepomp die water van 35°C levert voor vloerverwarming. Bij buitentemperatuur onder 3°C daalt de COP en wordt maximaal 2,5 kW vermogen geleverd. Bij 3,5 à 4 kW is de COP 1 à 1,3 lager dan bij 2 kW warmtevraag. De laagste COP werd gemeten bij 1,0 kW warmtevraag. Ontwikkeling van vermogenssturing in combinatie met het cv-systeem is dus de moeite waard. De lagere COP bij hoge vermogens hangt samen met de hoge temperatuur van koudemiddel en uitblaaslucht in de binnenunit. Dit hing samen met de relatief lage luchtstroom en de warmteoverdracht in meestroom. Als airco’s vooral worden ingezet voor verwarming is het de moeite waard om de mogelijke COP verhoging door grotere binnenunits met tegenstroom te onderzoeken. Het regelgedrag is onderzocht bij constante warmtevraag, zowel van een airco alleen als in combinatie met een aan-uit geschakelde ketel die dezelfde ruimte verwarmt via radiatoren. Ook is het regelgedrag van een airco en ketel onderzocht bij een variabele warmtevraag, waarbij de ketel afzonderlijk werd geregeld door een ruimtethermostaat. De trage reactie van de cv-afgifte leidde tot een variabele ruimtetemperatuur, en maakt dat het airco- vermogen niet goed kan worden gestuurd door de ketel aan/uit te schakelen. In hoofdstuk 5 wordt voorgesteld hoe dit beter zou kunnen, en wat de mogelijke vervolgstappen in het ontwikkelingstraject zouden kunnen zijn.
Vijf studenten aan Hogeschool Van Hall Larenstein (VHL) hebben in 2019/2020 als onderdeel van de minor ‘Bomen en Stedelijke Omgeving’ onderzoek uitgevoerd naar het effect van groen/beplanting op de gevoelstemperatuur in 'bloemkoolwijken'. De opdrachtgever voor dit onderzoek was dr. ir. Jelle Hiemstra van Wageningen University & Research. Op het gebied van ENVI-met kregen zij begeleiding van dr. ir. Cor Jacobs van Wageningen University & Research, die hen hielp met het bouwen van het model en het berekenen van de temperatuur, luchtvochtigheid, windstromen en gevoelstemperatuur. De studenten werden begeleid door docent dr. Mart Vlam. Dit artikel is geschreven op basis van vragen die ex-redactielid Jozé ’t Hoen en redactielid Jaco Houweling de studenten hebben voorgelegd.
MULTIFILE
In large organizations, innovation activities often take place in separate departments, centers, or studios. These departments aim to produce prototypes of solutions to the problems of operational business owners. However, too often these concepts remain in the prototype stage: they are never implemented and fall into what is popularly termed the Valley of Death. A design approach to innovation is presented as a solution to the problem. However, practice shows that teams that use design nevertheless encounter implementation challenges due to the larger infrastructure of the organization they are part of. This research aims to explore which organizational factors contribute to the Valley of Death during design innovation. An embedded multiple case study at a large heritage airline is applied. Four projects are analyzed to identify implementation challenges. A thematic data analysis reveals organizational design, departmental silos, and dissimilar innovation strategies contribute to the formation of, and encounters with, the Valley of Death. Arising resource-assignment challenges that result from these factors are also identified. Materialization, user-centeredness, and holistic problem framing are identified as design practices that mitigate encounters with the Valley of Death, thus leading to projects being fully realized. https://doi.org/10.1111/dmj.12052 LinkedIn: https://www.linkedin.com/in/christine-de-lille-8039372/
MULTIFILE
Nederland streeft naar een verduurzaming van het energiesysteem. In 2020 moet 14% van onze energie duurzaam opgewekt zijn, waarbij de zon, naast wind, als belangrijkste duurzame energiebron gezien wordt. Systemen voor geconcentreerde zonne-energie kunnen worden ingezet voor het opwekken van elektrische en/of thermische energie. Grootschalige systemen (multi-MW) met spiegels worden reeds toegepast in zonnevelden. Het HAN Lectoraat Duurzame Energie werkt al enige jaren aan innovatieve systemen met lenzen waarbij naast het concentreren van direct licht het overblijvende diffuse licht beschikbaar is voor verlichting van de onderliggende ruimte. We willen de in eerdere projecten opgedane kennis en ervaring nu inzetten in een nieuw project, waarin we streven van prototype naar toepassing te komen. De bedrijven zijn benaderd over de nog openstaande vragen. Hieruit is een nieuwe onderzoeksvraag gevormd: Hoe kan voor systemen van geconcentreerde zonne-energie voor toepassingen in glastuinbouw en gebouwde omgevingen voor de productie van zowel elektriciteit als warmte, de energie-opbrengst verhoogd worden door een optimaler gebruik van de lichtinval en met een compacter en duurzamer systeem? In dit project, CONSOLE (acroniem voor CONcentrated SOLar Energy), gaan we werken aan het optimaliseren van de bestaande systemen en het ontwerpen van verbeterde (hybride) systemen voor het opwekken van warmte en elektriciteit in kassen en gebouwde omgeving. We gebruiken hiervoor zowel modellering als meten en testen en komen vanuit een inventarisatie tot een pakket van eisen wat uiteindelijk tot verbeterde prototypes leidt die geschikt zijn voor commerciële toepassing. We doen dit vanuit een nauwe samenwerking met 12 MKB’s, een branche-organisatie en een Centre of Expertise. Daarnaast is er een directe koppeling met het onderwijs, door de betrokkenheid van docent-onderzoekers en studenten in semesterprojecten, stages en afstudeerprojecten.
Door klimaatverandering is het vaker en langer heet in de stad. Hinder door oververhitting in woningen neemt toe. In woonwijken worden steeds meer airconditionings zichtbaar om woningen ook in de zomer comfortabel te houden, met een toenemend energiegebruik als gevolg. Verschillende factoren zijn van invloed op de hoogte van de temperatuur in de woning, zoals het gebied, het gebouw en het gedrag van de bewoner. Professionals van woningcorporaties staan voor ontwerpkeuzes bij renovatie van woningen en willen zekerheid over het effect van die keuzes op de binnentemperatuur. De kennis over de daadwerkelijke binnentemperatuur in bestaande woningen, de beleving van de bewoner en het effect van mogelijke maatregelen is beperkt. Ook is de invloed van de directe omgeving van woningen onbekend. Gemeenten en provincies werken samen aan Regionale energiestrategieën (RES) en warmtevisies. De koelbehoefte wordt hierin momenteel niet meegenomen. Het project Hitte in de woning heeft als doel antwoord te geven op de vraag wat de (toekomstige) koelbehoefte van Nederlandse woningen is en welke maatregelen woningcorporaties, gemeentes en provincies effectief in kunnen zetten om op energiezuinige manier aan deze behoefte te voldoen. Door praktijkmetingen wordt de koelbehoefte en het effect van verschillende maatregelen bepaald. Hiermee wordt in kaart gebracht in welke praktijksituaties daadwerkelijk hinder ontstaat en welke maatregelen zinvol zijn. Ook worden met deze metingen rekenmethodieken aan de praktijk getoetst. Woningcorporaties krijgen handvatten voor zowel ontwerpkeuzes bij renovatie als voor de communicatie naar bewoners over effectief (ventilatie)gedrag. Voor gemeenten en provincies worden de meetresultaten vertaald naar scenario's op het niveau van een stad. Wat is het effect van klimaatverandering op de koelbehoefte (en energievraag) van een stad en wat zijn mogelijke maatregelen waar professionals van gemeenten op kunnen sturen?