Dienst van SURF
© 2025 SURF
The project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU in 2020 and completed its activities in 2022, pursuing and accomplishing the definition, development and initial assessment of a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe. The project addressed the ATM and air transport, including Urban Air Mobility (UAM), integration in the overall transport network serving urban and extended urban (up to regional level) mobility, specifically identifying and considering the transportation and passengers service scenarios expected for the near, medium and long-term future, i.e. for the project baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the main outcomes from the project activities are summarized, with particular emphasis on the studies about the definition of future scenarios and use cases for the integration of the vertical transport with the surface transport towards integrated intermodal transport system and about identification of the barriers towards this goal. In addition, an outline is provided on the specific ConOps for the integration of ATM in intermodal transport infrastructure (i.e. the part of the overall ConOps devoted to integration of different transportation means) and on the specific ConOps for the integration of ATM in intermodal service to passengers (i.e. the specific component of the ConOps devoted to design of a unique service to passengers). Finally, the main outcomes are summarized from the validation of the proposed ConOps through dedicated simulations.
Landside operations in air cargo terminals consist of many freight forwarders (FFWs) delivering and picking up cargo at the capacity-constrained loading docks at the airport's ground handlers' (GHs) facilities. To improve the operations of the terminal and take advantage of their geographical proximity a small set of FFWs can build a coalition to consolidate stochastically-arriving shipments and share truck fleet capacity while other FFWs continue bringing cargo to the terminal in a non-cooperative manner. Results from a detailed discrete-event simulation model of the cargo landside operations in Amsterdam Aiport showed that all operational policies had trade-offs in terms of the average shipment cycle time of coalition FFWs, the average shipment cycle time of non-coalition FFWs, and the total distance traveled by the coalition fleet, suggesting that horizontal cooperation in this context was not always beneficial, contrary to what previous studies on horizontal cooperation have found. Since dock capacity constitutes a significant constraint on operations in air cargo hubs, this paper also investigates the effect of dock capacity utilization and horizontal cooperation on the performance of consolidation policies implemented by the coalition. Thus, we built a general model of the air cargo terminal to analyze the effects caused by dock capacity utilization without the added complexity of landside operations at Amsterdam Airport to investigate whether the results hold for more general scenarios. Results from the general simulation model suggest that, in scenarios where dock and truck capacity become serious constraints, the average shipment cycle times of non-coalition FFWs are reduced at the expense of an increase in the cycle times of FFWs who constitute the coalition. A good balance among all the performance measures considered in this study is reached by following a policy that takes advantage of consolidating shipments based on individual visits to GH.
Paris Charles de Gaulle Airport was the second European airport in terms of traffic in 2019, having transported 76.2 million passengers. Its large infrastructures include four runways, a large taxiway network, and 298 aircraft parking stands (131 contact) among three terminals. With the current pandemic in place, the European air traffic network has declined by −65% flights when compared with 2019 traffic (pre-COVID-19), having a severe negative impact on the aviation industry. More and more often taxiways and runways are used as parking spaces for aircraft as consequence of the drastic decrease in air traffic. Furthermore, due to safety reasons, passenger terminals at many airports have been partially closed. In this work we want to study the effect of the reduction in the physical facilities at airports on airspace and airport capacity, especially in the Terminal Manoeuvring Area (TMA) airspace, and in the airport ground side. We have developed a methodology that considers rare events such as the current pandemic, and evaluates reduced access to airport facilities, considers air traffic management restrictions and evaluates the capacity of airport ground side and airspace. We built scenarios based on real public information on the current use of the airport facilities of Paris Charles de Gaulle Airport and conducted different experiments based on current and hypothetical traffic recovery scenarios. An already known optimization metaheuristic was implemented for optimizing the traffic with the aim of avoiding airspace conflicts and avoiding capacity overloads on the ground side. The results show that the main bottleneck of the system is the terminal capacity, as it starts to become congested even at low traffic (35% of 2019 traffic). When the traffic starts to increase, a ground delay strategy is effective for mitigating airspace conflicts; however, it reveals the need for additional runways
Since March 2013, Paul Peeters is a member of the ICAO/CAEP Working Group 3, which is responsible for setting a new fuel efficiency standard for of civil aviation. He does so for the International Coalition for Sustainable Aviation (ICSA). ICSA was established in 1998 by a group of national and international environmental NGOs as official observers. Since its inception, ICSA has contributed to CAEP’s work on technical means to reduce emissions and noise, the role of market-based measures, supporting economic and environmental analysis, modelling and forecasting, and ICAO’s carbon calculator. It has also been invited to present its views at ICAO workshops on carbon markets and bio-fuels, and has presented to the high-level Group on Internation Aviation and Climate Change (GIACC). ICSA uses the expertise within its NGO membership to formulate its co-ordinated positions. To gain the broadest level of understanding and input from environmental NGOs, ICSA communicates with, and invites comment from, other NGO networks and bodies working in related areas. ICSA’s participation in ICAO and CAEP meetings is currently provided by the Aviation Environment Federation (AEF), the International Council for Clean Transportation (ICCT) and Transport and Environment (T&E). See http://www.icsa-aviation.org
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.
Client: Blue Plan regional activity centre (UNEP/MAP), subcontracted through TEC Conseille, Marseille As part of a regional workshop organized by the Blue Plan in July 2008, one of the conclusions of the Group "Tourism and Climate Change” was the need for saving energy in tourism transportation and particularly of air transport, as air transport is responsible for the largest share of greenhouse gas emissions caused by tourism. In the period 1998-2005, the share of international arrivals by air in the Mediterranean area rose from 23% to 40%, respectively, or in numbers, from 47 to 122 million tourists. Some countries, particularly islands, almost entirely depend on air transport for their international tourism. For example in 2005 air transport is used by 87%, 78%, 73%, 64% and 51% of international tourists arriving in, respectively, Israel, Egypt, Spain, Tunisia and Morocco. According to Plan Bleu forecasts on international arrivals, assuming that the share of air transport remains the same, the number of tourists travelling by plane will reach over 158 million by 2025. Given the role of aviation in the emissions of greenhouse gases (GHG), such a development is clearly not sustainable in the light of the necessary reduction of emissions to avoid dangerous climate change. The overall aim of the study is to inform policy makers and entrepreneurs in both destination and in origin countries, on possible options to reduce emissions of greenhouse gases from air travel, while at the same time not impairing the economic development of tourism. To do this, CSTT has developed a tourism scenario model for all countries with Mediterranean coasts describing inbound and outbound international tourism and domestic tourism by all available transport modes and giving both contributions to GDP and total GHG emissions. This model responses to global mitigation policies (increasing the cost of carbon emissions) as well as national policies (taxes, subsidies and changes in transport quality per transport mode). Using the model both global and national policies can be assessed as well as the risks of global mitigation policies for specific countries.