Dienst van SURF
© 2025 SURF
Introduction: Hardly any research exists on the relationship between substance use and sexual behaviors in patients with a substance use disorder. This study aimed to examine this relation by looking into perceived positive effects on sexual behavior, perceived negative effects and risky sexual behavior due to substance use in patient groups of users of alcohol, stimulants, sedatives and Gamma hydroxybutyrate (GHB). In addition, the current study aimed to address the question whether sexual behavior (e.g. number of sexual partners, sexualactivity) differs between these patient groups.Method: A total of 180 patients with a substance use disorder (i.e. alcohol, amphetamine, cannabis, cocaine, GHB and opiates) participated. A self-report questionnaire was administered with questions on substance use,sexual behaviors (e.g. sexual activity, masturbation, use of pornography) and statements about the perceived changes in sexual functioning and behavior under influence of the primary substance of abuse.Results: All four groups reported changes in sexual thoughts, feelings and behavior due to the use of their primary substance. More than half of the patients reported enhancements in sexual domains (i.e. sexual pleasure,sexual arousal, sexual behavior), but also decrements or risky behaviors and about a quarter stated that their sexual thoughts, feelings and behaviors were often associated with the use of their primary substance of abuse.Patients with a GHB use disorder reported the strongest relation between drug use and sexual behavior. Users of HB not only reported more enhancement in several sexual domains, but also less decline in sexual domains compared to the other patient groups and more risky behavior or more sexual activity than some of the other groups of patients.Conclusions: The results underline the importance of addressing the relationship between substance use and sexual behavior in treatment programs, as patients may be hesitant to stop their use of substances when they experience many positive effects in their sexual behavior. Future research directions are suggested.
In Eastern Africa, increasing climate variability and changing socioeconomic conditions are exacerbating the frequency and intensity of drought disasters. Droughts pose a severe threat to food security in this region, which is characterized by a large dependency on smallholder rain-fed agriculture and a low level of technological development in the food production systems. Future drought risk will be determined by the adaptation choices made by farmers, yet few drought risk models … incorporate adaptive behavior in the estimation of drought risk. Here, we present an innovative dynamic drought risk adaptation model, ADOPT, to evaluate the factors that influence adaptation decisions and the subsequent adoption of measures, and how this affects drought risk for agricultural production. ADOPT combines socio-hydrological and agent-based modeling approaches by coupling the FAO crop model AquacropOS with a behavioral model capable of simulating different adaptive behavioral theories. In this paper, we compare the protection motivation theory, which describes bounded rationality, with a business-as-usual and an economic rational adaptive behavior. The inclusion of these scenarios serves to evaluate and compare the effect of different assumptions about adaptive behavior on the evolution of drought risk over time. Applied to a semi-arid case in Kenya, ADOPT is parameterized using field data collected from 250 households in the Kitui region and discussions with local decision-makers. The results show that estimations of drought risk and the need for emergency food aid can be improved using an agent-based approach: we show that ignoring individual household characteristics leads to an underestimation of food-aid needs. Moreover, we show that the bounded rational scenario is better able to reflect historic food security, poverty levels, and crop yields. Thus, we demonstrate that the reality of complex human adaptation decisions can best be described assuming bounded rational adaptive behavior; furthermore, an agent-based approach and the choice of adaptation theory matter when quantifying risk and estimating emergency aid needs.
MULTIFILE
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
Automated driving nowadays has become reality with the help of in-vehicle (ADAS) systems. More and more of such systems are being developed by OEMs and service providers. These (partly) automated systems are intended to enhance road and traffic safety (among other benefits) by addressing human limitations such as fatigue, low vigilance/distraction, reaction time, low behavioral adaptation, etc. In other words, (partly) automated driving should relieve the driver from his/her one or more preliminary driving tasks, making the ride enjoyable, safer and more relaxing. The present in-vehicle systems, on the contrary, requires continuous vigilance/alertness and behavioral adaptation from human drivers, and may also subject them to frequent in-and-out-of-the-loop situations and warnings. The tip of the iceberg is the robotic behavior of these in-vehicle systems, contrary to human driving behavior, viz. adaptive according to road, traffic, users, laws, weather, etc. Furthermore, no two human drivers are the same, and thus, do not possess the same driving styles and preferences. So how can one design of robotic behavior of an in-vehicle system be suitable for all human drivers? To emphasize the need for HUBRIS, this project proposes quantifying the behavioral difference between human driver and two in-vehicle systems through naturalistic driving in highway conditions, and subsequently, formulating preliminary design guidelines using the quantified behavioral difference matrix. Partners are V-tron, a service provider and potential developer of in-vehicle systems, Smits Opleidingen, a driving school keen on providing state-of-the-art education and training, Dutch Autonomous Mobility (DAM) B.V., a company active in operations, testing and assessment of self-driving vehicles in the Groningen province, Goudappel Coffeng, consultants in mobility and experts in traffic psychology, and Siemens Industry Software and Services B.V. (Siemens), developers of traffic simulation environments for testing in-vehicle systems.
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.