Dienst van SURF
© 2025 SURF
Athletes who wish to resume high-level activities after an injury to the anterior cruciate ligament (ACL) are often advised to undergo surgical reconstruction. Nevertheless, ACL reconstruction (ACLR) does not equate to normal function of the knee or reduced risk of subsequent injuries. In fact, recent evidence has shown that only around half of post-ACLR patients can expect to return to competitive level of sports. A rising concern is the high rate of second ACL injuries, particularly in young athletes, with up to 20% of those returning to sport in the first year from surgery experiencing a second ACL rupture. Aside from the increased risk of second injury, patients after ACLR have an increased risk of developing early onset of osteoarthritis. Given the recent findings, it is imperative that rehabilitation after ACLR is scrutinized so the second injury preventative strategies can be optimized. Unfortunately, current ACLR rehabilitation programs may not be optimally effective in addressing deficits related to the initial injury and the subsequent surgical intervention. Motor learning to (re-)acquire motor skills and neuroplastic capacities are not sufficiently incorporated during traditional rehabilitation, attesting to the high re-injury rates. The purpose of this article is to present novel clinically integrated motor learning principles to support neuroplasticity that can improve patient functional performance and reduce the risk of second ACL injury. The following key concepts to enhance rehabilitation and prepare the patient for re-integration to sports after an ACL injury that is as safe as possible are presented: (1) external focus of attention, (2) implicit learning, (3) differential learning, (4) self-controlled learning and contextual interference. The novel motor learning principles presented in this manuscript may optimize future rehabilitation programs to reduce second ACL injury risk and early development of osteoarthritis by targeting changes in neural networks.
LINK
Modifiable (biomechanical and neuromuscular) anterior cruciate ligament (ACL) injury risk factors have been identified in laboratory settings. These risk factors were subsequently used in ACL injury prevention measures. Due to the lack of ecological validity, the use of on-field data in the ACL injury risk screening is increasingly advocated. Though, the kinematic differences between laboratory and on-field settings have never been investigated. The aim of the present study was to investigate the lower-limb kinematics of female footballers during agility movements performed both in laboratory and football field environments. Twenty-eight healthy young female talented football (soccer) players (14.9 ± 0.9 years) participated. Lower-limb joint kinematics was collected through wearable inertial sensors (Xsens Link) in three conditions: (1) laboratory setting during unanticipated sidestep cutting at 40-50°; on the football pitch (2) football-specific exercises (F-EX) and (3) football games (F-GAME). A hierarchical two-level random effect model in Statistical Parametric Mapping was used to compare joint kinematics among the conditions. Waveform consistency was investigated through Pearson's correlation coefficient and standardized z-score vector. In-lab kinematics differed from the on-field ones, while the latter were similar in overall shape and peaks. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found for on-field kinematics (p < 0.044). The largest differences were found during landing and weight acceptance. The biomechanical differences between lab and field settings suggest the application of context-related adaptations in female footballers and have implications in ACL injury prevention strategies. Highlights: Talented youth female football players showed kinematical differences between the lab condition and the on-field ones, thus adopting a context-related motor strategy. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found on the field. Such differences pertain to the ACL injury mechanism and prevention strategies. Preventative training should support the adoption of non-linear motor learning to stimulate greater self-organization and adaptability. It is recommended to test football players in an ecological environment to improve subsequent primary ACL injury prevention programmes.
Context: Only 55% of the athletes return to competitive sports after an anterior cruciate ligament (ACL) injury. Athletes younger than 25 years who return to sports have a second injury rate of 23%. There may be a mismatch between rehabilitation contents and the demands an athlete faces after returning to sports. Current return-to-sports (RTS) tests utilize closed and predictable motor skills; however, demands on the field are different. Neurocognitive functions are essential to manage dynamic sport situations and may fluctuate after peripheral injuries. Most RTS and rehabilitation paradigms appear to lack this aspect, which might be linked to increased risk of second injury.Objective: This systematic and scoping review aims to map existing evidence about neurocognitive and neurophysiological functions in athletes, which could be linked to ACL injury in an integrated fashion and bring an extensive perspective to assessment and rehabilitation approaches.Data Sources: PubMed and Cochrane databases were searched to identify relevant studies published between 2005 and 2020 using the keywords ACL, brain, cortical, neuroplasticity, cognitive, cognition, neurocognition, and athletes.Study Selection: Studies investigating either neurocognitive or neurophysiological functions in athletes and linking these to ACL injury regardless of their design and technique were included.Study Design: Systematic review. Level of Evidence: Level 3.Data Extraction: The demographic, temporal, neurological, and behavioral data revealing possible injury-related aspects were extracted and summarized.Results: A total of 16 studies were included in this review. Deficits in different neurocognitive domains and changes in neurophysiological functions could be a predisposing risk factor for, or a consequence caused by, ACL injuries.Conclusion: Clinicians should view ACL injuries not only as a musculoskeletal but also as a neural lesion with neurocognitive and neurophysiological aspects. Rehabilitation and RTS paradigms should consider these changes for assessment and interventions after injury.
In societies where physical activity levels are declining, stimulating sports participation in youth is vital. While sports offer numerous benefits, injuries in youth are at an all-time high with potential long-term consequences. Particularly, women football's popularity surge has led to a rise in knee injuries, notably anterior cruciate ligament (ACL) injuries, with severe long-term effects. Urgent societal attention is warranted, supported by media coverage and calls for action by professional players. This project aims to evaluate the potential of novel artificial intelligence-based technology to enhance player monitoring for injury risk, and to integrate these monitoring pathways into regular training practice. Its success may pave the way for broader applications across different sports and injuries. Implementation of results from lab-based research into practice is hindered by the lack of skills and technology needed to perform the required measurements. There is a critical need for non-invasive systems used during regular training practice and allowing longitudinal monitoring. Markerless motion capture technology has recently been developed and has created new potential for field-based data collection in sport settings. This technology eliminates the need for marker/sensor placement on the participant and can be employed on-site, capturing movement patterns during training. Since a common AI algorithm for data processing is used, minimal technical knowledge by the operator is required. The experienced PLAYSAFE consortium will exploit this technology to monitor 300 young female football players over the course of 1 season. The successful implementation of non-invasive monitoring of football players’ movement patterns during regular practice is the primary objective of this project. In addition, the study will generate key insights into risk factors associated with ACL injury. Through this approach, PLAYSAFE aims to reduce the burden of ACL injuries in female football players.