Dienst van SURF
© 2025 SURF
Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.
Older people are often over-represented in morbidity and mortality statistics associated with hot and cold weather, despite remaining mostly indoors. The study “Improving thermal environment of housing for older Australians” focused on assessing the relationships between the indoor environment, building characteristics, thermal comfort and perceived health/wellbeing of older South Australians over a study period that included the warmest summer on record. Our findings showed that indoor temperatures in some of the houses reached above 35 °C. With concerns about energy costs, occupants often use adaptive behaviours to achieve thermal comfort instead of using cooling (or heating), although feeling less satisfied with the thermal environment and perceiving health/wellbeing to worsen at above 28 °C (and below 15 °C). Symptoms experienced during hot weather included tiredness, shortness of breath, sleeplessness and dizziness, with coughs and colds, painful joints, shortness of breath and influenza experienced during cold weather. To express the influence of temperature and humidity on perceived health/wellbeing, a Temperature Humidity Health Index (THHI) was developed for this cohort. A health/wellbeing perception of “very good” is achieved between an 18.4 °C and 24.3 °C indoor operative temperature and a 55% relative humidity. The evidence from this research is used to inform guidelines about maintaining home environments to be conducive to the health/wellbeing of older people. Original publication at MDPI: https://doi.org/10.3390/atmos13010096 © 2022 by the authors. Licensee MDPI.
MULTIFILE