ObjectivesBody weight and muscle mass loss following an acute hospitalization in older patients may be influenced by malnutrition and sarcopenia among other factors. This study aimed to assess the changes in body weight and composition from admission to discharge and the geriatric variables associated with the changes in geriatric rehabilitation inpatients.DesignRESORT is an observational, longitudinal cohort.Setting and ParticipantsGeriatric rehabilitation inpatients admitted to geriatric rehabilitation wards at the Royal Melbourne Hospital, Melbourne, Australia (N = 1006).MethodsChanges in body weight and body composition [fat mass (FM), appendicular lean mass (ALM)] from admission to discharge were analyzed using linear mixed models. Body mass index (BMI) categories, (risk of) malnutrition (Global Leadership Initiative on Malnutrition), sarcopenia (European Working Group on Sarcopenia in Older People), dependence in activities of daily living (ADL), multimorbidity, and cognitive impairment were tested as geriatric variables by which the changes in body weight and composition may differ.ResultsA total of 1006 patients [median age: 83.2 (77.7–88.8) years, 58.5% female] were included. Body weight, FM (kg), and FM% decreased (0.30 kg, 0.43 kg, and 0.46%, respectively) and ALM (kg) and ALM% increased (0.17 kg and 0.33%, respectively) during geriatric rehabilitation. Body weight increased in patients with underweight; decreased in patients with normal/overweight, obesity, ADL dependence and in those without malnutrition and sarcopenia. ALM% and FM% decreased in patients with normal/overweight. ALM increased in patients without multimorbidity and in those with malnutrition and sarcopenia; ALM% increased in patients without multimorbidity and with sarcopenia.Conclusions and ImplicationsIn geriatric rehabilitation, body weight increased in patients with underweight but decreased in patients with normal/overweight and obesity. ALM increased in patients with malnutrition and sarcopenia but not in patients without. This suggests the need for improved standard of care independent of patients’ nutritional risk.
Healthy gestational weight gain (GWG) is associated with better pregnancy outcomes and with improved health in the later lives of women and babies. In this thesis the author describes the process of developing an intervention to help pregnant women reach a healthy GWG. The need for this intervention was derived from discussions with midwives, working in primary care in the Netherlands. In this introduction, the author describes the background of the larger project “Promoting Health Pregnancy”, of which this study is a part (1.2), the problem of unhealthy GWG (1.3-1.6) and offers a brief introduction to the theoretical framework of the study and to the subsequent chapters (1.7-1.9).
Healthy gestational weight gain (GWG) is associated with better pregnancy outcomes and with improved health in the later lives of women and babies. In this thesis the author describes the process of developing an intervention to help pregnant women reach a healthy GWG. The need for this intervention was derived from discussions with midwives, working in primary care in the Netherlands. In this introduction, the author describes the background of the larger project “Promoting Health Pregnancy”, of which this study is a part (1.2), the problem of unhealthy GWG (1.3-1.6) and offers a brief introduction to the theoretical framework of the study and to the subsequent chapters (1.7-1.9).
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.
De verplichting in de Binnenvaart om haar emissies te reduceren leidt tot grote uitdagingen in de sector, omdat nieuwe technologie in bestaande schepen tot problemen leidt en vaak een te grote investering vraagt. VIV, de branchevereniging van inbouw-, reparatie- en revisiebedrijven, heeft zich uitgesproken voor het gebruik van hernieuwbare methanol. Het ontbreekt de bedrijven echter aan kennis en vaardigheid over de conversie van een bestaande dieselmotor naar hernieuwbare methanol. De methanol industrie, verenigd in het Methanol Institute, zet zich in voor het gebruik van methanol in de scheepvaart. In de Zeevaart is al ervaring opgedaan met hernieuwbare methanol, maar de schaal en technologie verschilt met die in onze Binnenvaart. VIV en het Methanol Institute hebben de HAN benaderd met de vraag om de kennis en vaardigheid in gebruik van hernieuwbare methanol in scheepsmotoren te vergroten. De HAN beantwoordt deze marktvraag in 4 werkpakketten waar het draait om de retrofit conversie van een bestaande binnenvaartaandrijving, op een praktisch toepasbare manier. Ze maakt hier een vertaalslag van de wetenschap en kennis bij grote zeevaartmotoren, naar het binnenvaart-MKB. Dit gebeurt door te onderzoeken binnen welke kaders, en met welke indicatoren tijdens het afstellen van een onderzoeksmotor, een optimale methanol dual-fuel motor opgezet kan worden. Het hoofddoel is het verhogen van de kennis en vaardigheid over dual-fuel motoren op Hernieuwbare Methanol in de reparatie- en revisiesector. Het Schoon Schip project combineert de opgedane kennis met kennis uit de academische wereld, en de motorervaring van alle partners, om tot een betrouwbare toepassing van methanol in de binnenvaart te komen. Het gaat er om tot een werkende praktijkoplossing te komen voor het gebruik van hernieuwbare methanol in de bestaande vloot van 12.000 binnenvaartschepen.