Dienst van SURF
© 2025 SURF
Background: To experience external objects in such a way that they are perceived as an integral part of one's own body is called embodiment. Wearable technology is a category of objects, which, due to its intrinsic properties (eg, close to the body, inviting frequent interaction, and access to personal information), is likely to be embodied. This phenomenon, which is referred to in this paper as wearable technology embodiment, has led to extensive conceptual considerations in various research fields. These considerations and further possibilities with regard to quantifying wearable technology embodiment are of particular value to the mobile health (mHealth) field. For example, the ability to predict the effectiveness of mHealth interventions and knowing the extent to which people embody the technology might be crucial for improving mHealth adherence. To facilitate examining wearable technology embodiment, we developed a measurement scale for this construct. Objective: This study aimed to conceptualize wearable technology embodiment, create an instrument to measure it, and test the predictive validity of the scale using well-known constructs related to technology adoption. The introduced instrument has 3 dimensions and includes 9 measurement items. The items are distributed evenly between the 3 dimensions, which include body extension, cognitive extension, and self-extension.Methods: Data were collected through a vignette-based survey (n=182). Each respondent was given 3 different vignettes, describing a hypothetical situation using a different type of wearable technology (a smart phone, a smart wristband, or a smart watch) with the purpose of tracking daily activities. Scale dimensions and item reliability were tested for their validity and Goodness of Fit Index (GFI). Results: Convergent validity of the 3 dimensions and their reliability were established as confirmatory factor analysis factor loadings45 (>0.70), average variance extracted values40 (>0.50), and minimum item to total correlations50 (>0.40) exceeded established threshold values. The reliability of the dimensions was also confirmed as Cronbach alpha and composite reliability exceeded 0.70. GFI testing confirmed that the 3 dimensions function as intercorrelated first-order factors. Predictive validity testing showed that these dimensions significantly add to multiple constructs associated with predicting the adoption of new technologies (ie, trust, perceived usefulness, involvement, attitude, and continuous intention). Conclusions: The wearable technology embodiment measurement instrument has shown promise as a tool to measure the extension of an individual's body, cognition, and self, as well as predict certain aspects of technology adoption. This 3-dimensional instrument can be applied to mixed method research and used by wearable technology developers to improve future versions through such things as fit, improved accuracy of biofeedback data, and customizable features or fashion to connect to the users' personal identity. Further research is recommended to apply this measurement instrument to multiple scenarios and technologies, and more diverse user groups.
Background:Current technology innovations, such as wearables, have caused surprising reactions and feelings of deep connection to devices. Some researchers are calling mobile and wearable technologies cognitive prostheses, which are intrinsically connected to individuals as if they are part of the body, similar to a physical prosthesis. Additionally, while several studies have been performed on the phenomenology of receiving and wearing a physical prosthesis, it is unknown whether similar subjective experiences arise with technology.Objective:In one of the first qualitative studies to track wearables in a longitudinal investigation, we explore whether a wearable can be embodied similar to a physical prosthesis. We hoped to gain insights and compare the phases of embodiment (ie, initial adjustment to the prosthesis) and the psychological responses (ie, accept the prosthesis as part of their body) between wearables and limb prostheses. This approach allowed us to find out whether this pattern was part of a cyclical (ie, period of different usage intensity) or asymptotic (ie, abandonment of the technology) pattern.Methods:We adapted a limb prosthesis methodological framework to be applied to wearables and conducted semistructured interviews over a span of several months to assess if, how, and to what extent individuals come to embody wearables similar to prosthetic devices. Twelve individuals wore fitness trackers for 9 months, during which time interviews were conducted in the following three phases: after 3 months, after 6 months, and at the end of the study after 9 months. A deductive thematic analysis based on Murray’s work was combined with an inductive approach in which new themes were discovered.Results:Overall, the individuals experienced technology embodiment similar to limb embodiment in terms of adjustment, wearability, awareness, and body extension. Furthermore, we discovered two additional themes of engagement/reengagement and comparison to another device or person. Interestingly, many participants experienced a rarely reported phenomenon in longitudinal studies where the feedback from the device was counterintuitive to their own beliefs. This created a blurring of self-perception and a dilemma of “whom” to believe, the machine or one’s self.Conclusions:There are many similarities between the embodiment of a limb prosthesis and a wearable. The large overlap between limb and wearable embodiment would suggest that insights from physical prostheses can be applied to wearables and vice versa. This is especially interesting as we are seeing the traditionally “dumb” body prosthesis becoming smarter and thus a natural merging of technology and body. Future longitudinal studies could focus on the dilemma people might experience of whether to believe the information of the device over their own thoughts and feelings. These studies might take into account constructs, such as technology reliance, autonomy, and levels of self-awareness.
Physical activity monitoring with wearable technology has the potential to support stroke rehabilitation. Little is known about how physical therapists use and value the use of wearable activity monitors. This cross-sectional study explores the use, perspectives, and barriers to wearable activity monitoring in day-to-day stroke care routines amongst physical therapists. Over 300 physical therapists in primary and geriatric care and rehabilitation centers in the Netherlands were invited to fill in an online survey that was developed based on previous studies and interviews with experts. In total, 103 complete surveys were analyzed. Out of the 103 surveys, 27% of the respondents were already using activity monitoring. Of the suggested treatment purposes of activity monitoring, 86% were perceived as useful by more than 55% of the therapists. The most recognized barriers to clinical implementation were lack of skills and knowledge of patients (65%) and not knowing what brand and type of monitor to choose (54%). Of the non-users, 79% were willing to use it in the future. In conclusion, although the concept of remote activity monitoring was perceived as useful, it was not widely adopted by physical therapists involved in stroke care. To date, skills, beliefs, and attitudes of individual therapists determine the current use of wearable technology.
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Developing and testing several AR and VR concepts for SAMSUNG (Benelux) Samsung and Breda University of Applied Sciences decided to work together on developing and testing several new digital media concepts with a focus on VR and gaming. This collaboration has led to several innovative projects and concepts, among others: the organisation of the first Samsung VR jam in which game and media students developed new concepts for SAMSUNG GEAR in 24 hours, the pre-development of a VR therapy concept (Fear of Love) created by CaptainVR, the Samsung Industry Case in which students developed new concepts for SAMSUNG GEAR (wearables), the IGAD VR game pitch where over 15 VR game concepts were created for SAMSUNG VR GEAR and numerous projects in which VR concepts are developed and created using new SAMSUNG technologies. Currently we are co-developing new digital HRM solutions.