Dienst van SURF
© 2025 SURF
The initial trigger of this research about learning from video was the availability of log files from users of video material. Video modality is seen as attractive as it is associated with the relaxed mood of watching TV. The experiments in this research have the goal to gain more insight in viewing patterns of students when viewing video. Students received an awareness instruction about the use of possible alternative viewing behaviors to see whether this would enhance their learning effects. We found that:- the learning effects of students with a narrow viewing repertoire were less than the learning effects of students with a broad viewing repertoire or strategic viewers.- students with some basic knowledge of the topics covered in the videos benefited most from the use of possible alternative viewing behaviors and students with low prior knowledge benefited the least.- the knowledge gain of students with low prior knowledge disappeared after a few weeks; knowledge construction seems worse when doing two things at the same time.- media players could offer more options to help students with their search for the content they want to view again.- there was no correlation between pervasive personality traits and viewing behavior of students.The right use of video in higher education will lead to students and teachers that are more aware of their learning and teaching behavior, to better videos, to enhanced media players, and, finally, to higher learning effects that let users improve their learning from video.
This demo is the first outcome of the research project VR for Diversity. The theoretical backgrounds for the project are shortly discussed and the concept for Amelia’s Dream is presented. Amelia’s Dream is a VR experience that is filmed using volumetric video capture technology, in which a young woman shares some of her dreams and concerns, relating to issues of gender equality. Focusing on how parasocial and physical interaction may impact the persuasive effects of VR, the research plan shortly elaborates on how the installation will be used for experimental studies into the possibilities of VR as a perspective shifter.
Alcohol use disorder (AUD) is a major problem. In the USA alone there are 15 million people with an AUD and more than 950,000 Dutch people drink excessively. Worldwide, 3-8% of all deaths and 5% of all illnesses and injuries are attributable to AUD. Care faces challenges. For example, more than half of AUD patients relapse within a year of treatment. A solution for this is the use of Cue-Exposure-Therapy (CET). Clients are exposed to triggers through objects, people and environments that arouse craving. Virtual Reality (VRET) is used to experience these triggers in a realistic, safe, and personalized way. In this way, coping skills are trained to counteract alcohol cravings. The effectiveness of VRET has been (clinically) proven. However, the advent of AR technologies raises the question of exploring possibilities of Augmented-Reality-Exposure-Therapy (ARET). ARET enjoys the same benefits as VRET (such as a realistic safe experience). But because AR integrates virtual components into the real environment, with the body visible, it presumably evokes a different type of experience. This may increase the ecological validity of CET in treatment. In addition, ARET is cheaper to develop (fewer virtual elements) and clients/clinics have easier access to AR (via smartphone/tablet). In addition, new AR glasses are being developed, which solve disadvantages such as a smartphone screen that is too small. Despite the demand from practitioners, ARET has never been developed and researched around addiction. In this project, the first ARET prototype is developed around AUD in the treatment of alcohol addiction. The prototype is being developed based on Volumetric-Captured-Digital-Humans and made accessible for AR glasses, tablets and smartphones. The prototype will be based on RECOVRY, a VRET around AUD developed by the consortium. A prototype test among (ex)AUD clients will provide insight into needs and points for improvement from patient and care provider and into the effect of ARET compared to VRET.
A unique testing ground where the creative sector and education work together to better understand the possibilities around volumetric video capturing. Within a volumetric studio, dozens of cameras capture all the movements of a living subject simultaneously. These recordings are converted into a fully moving and digital image, which results in an image that is barely distinguishable from reality. Chronosphere gives content creators and scientists the unique opportunity to experiment with volumetric capturing, using the newest volumetric studio within De Effenaar. There is room for a total of twenty projects, and proposals can be submitted.Partners:De Effenaar 4DR Studios Wildvreemd Natlab 360 verbeelding Dutch Rose Media Hyperspace Institute Fontys Hogescholen TU/e Center for Humans & Technology
Create and test a Virtual Reality emergency trainer that is able to optimise the abcde emergency training method for general practitioner students.In this project a Virtual Reality application is created and tested that is aimed to contribute to the learning goals and engagement with current emergency training methods. In addition, it aims at having an added value to live simulation training courses and existing media used for training (ranging from online instruction videos to interactive games). How to utilise the characteristics of Virtual Reality (senses, interaction, connection & manipulation) and what scenarios and simulation fit an interactive 360 VR simulation? In addition, we will create a training variant in which actors are captured through volumetric recordings. The 360 VR and volumetric VR / AR training will be compared with the life training on different learning goals and experiences. Partners:Schola MedicaChronosphere