Dienst van SURF
© 2025 SURF
Taste is a main driver in preferences and food choices. Humans are predispositioned to prefer sweet and salty tastes and reject bitter and sour tastes, therefore bitter taste is often thought to cause the rejection of vegetables by children. In our study we investigated the taste and fattiness intensity for different preparation methods for ten vegetables. Our results showed that: Frequently consumed vegetables have almost no taste Sweetness is the most intensive taste in vegetables, followed by sourness and bitterness, saltiness is the least intensive taste Vegetable preparation method influences taste intensity
Bitterness has been suggested to be the main reason for the limited palatability of several vegetables. Vegetable acceptance has been associated with preparation method. However, the taste intensity of a variety of vegetables prepared by differentmethods has not been studied yet. The objective of this study is to assess the intensity of the five basic tastes and fattiness of ten vegetables commonly consumed in the Netherlands prepared by different methods using the modified Spectrum method. Intensities of sweetness, sourness, bitterness, umami, saltiness and fattiness were assessed for ten vegetables (cauliflower, broccoli, leek, carrot, onion, red bell pepper, French beans, tomato, cucumber and iceberg lettuce) by a panel (n = 9) trained in a modified Spectrum method. Each vegetable was assessed prepared by different methods (raw, cooked, mashed and as a cold pressed juice). Spectrum based reference solutions were available with fixed reference points at 13.3 mm (R1), 33.3mm(R2) and 66.7mm(R3) for each tastemodality on a 100mmline scale. For saltiness, R1 and R3 differed (16.7 mm and 56.7 mm). Mean intensities of all taste modalities and fattiness for all vegetables were mostly below R1 (13.3 mm). Significant differences (p b 0.05) within vegetables between preparation methods were found. Sweetness was the most intensive taste, followed by sourness, bitterness, fattiness, umami and saltiness.In conclusion, all ten vegetables prepared by different methods showed low mean intensities of all taste modalities and fattiness. Preparation method affected taste and fattiness intensity and the effect differed by vegetable type.
It has been shown that the identification of many foods including vegetables based on flavour cues is often difficult. The effect of providing texture cues in addition to flavour cues on the identification of foods and the effect of providing taste cues only on the identification of foods have not been studied. The aim of this study was to assess the role of smell, taste, flavour and texture cues in the identification of ten vegetables commonly consumed in The Netherlands (broccoli, cauliflower, French bean, leek, bell pepper, carrot, cucumber, iceberg lettuce, onion and tomato). Subjects (n ¼ 194) were randomly assigned to one smell (orthonasal), flavour (taste and smell) and flavour-texture (taste, smell and texture). Blindfolded subjects were asked to identify the vegetable from a list of 24 vegetables. Identification was the highest in the flavour-texture condition (87.5%). Identification was significantly lower in the flavour condition (62.8%). Identification was the lowest when only taste cues (38.3%) or only smell cues (39.4%) were provided. For four raw vegetables (carrot, cucumber, onion and tomato) providing texture cues in addition to flavour cues did not significantly change identification suggesting that flavour cues were sufficient to identify these vegetables. Identification frequency increased for all vegetables when perceived intensity of the smell, taste or flavour cue increased. We conclude that providing flavour cues (taste and smell) increases identification compared to only taste or only smell cues, combined flavour and texture cues are needed for the identification of many vegetables commonly consumed in The Netherlands.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.
In line with the ‘Natuur- en milieubeleidsplan Caribisch Nederland 2020-2030 (NMBP)’ the consortium intends with this research proposal to contribute to a prosperous society with a resilient population and healthy natural environment. The Caribbean Netherlands are dealing with a situation where imported vegetables and fruits are mostly imported and hardly affordable. This leads to consuming unhealthy food and high obesities rates as a consequence. A lack of good agricultural practices with regard to water-smart and nature inclusive agriculture, as well as limited coping capacities to deal with hazards and climate change, results in very limited local production and interest. Initiatives that focused only on agrotechnological solutions for food resilient futures turned out to be ineffective due to a lack of local ownership, which jeopardizes sustainability. Moreover, the ‘green’ and ‘blue’ domains are not seen as attractive career perspectives among youth, hampering a bright future for those domains. The aim of this research is to contribute to water-smart and nature inclusive food resilience embedded in a local participatory perspective in the Caribbean Netherlands. To address the above challenges, a living lab approach is adopted, where youth will be trained as (co)-facilitators (WP1) who will contribute to a participatory envisioning process and an articulation of food resilient futures (WP2). Finally, based on the envisioning process local stakeholders will select and implement experiments for food resilient futures followed by dissemination of results among key stakeholders as well as children and youth at the BES islands (WP3). This project strategy will lead to a network of a living lab where professionals and youth work together on food resilient futures. Training manuals and the results of experiments with regard to water and food system alternatives will be used actively to encourage youth to be involved in sustainable agriculture and consumption.
The message we intend to communicate is that in the future, our cities can (partly) feed themselves with healthy foods grown in microbial gardens, which can be part of a household kitchen or community garden for providing fresh green "vegetables" where the energy for the artificial LED lighting for the microbial garden is coming from solar panels on roofs thereby making this system free from fossil energy.For Floriade 2022, we would like to introduce the Urban Microbial garden pop-up restaurant for feeding and greening the city. The menu will include a speciality microbiota vegan burger made from algae, seaweed, fungi and fava beans served on dishes made from baked mycelium. Our objective is to elicit consumer perception and opinion on the future of our new microbial food chain, which is fully sustainable and safer for the environment. Consumer opinions will be video recorded and compiled into a short movie/video for further inspiration and analysis for product/service development. This pop-up restaurant is a logical extension of the Art-Work by 4F.STUDIO (Kim van den Belt, Joshua Kelly, Steven Wobbes) already present in Kavel 123 at Floriade as part of the Light Challenge. The artwork depicts a future object for community gardens which supports the idea of locally produced microbes. Since we already have work at Floriade, this living-lab project has the benefit of broadening the vision of their work through more in-depth and visceral feedback.