Dienst van SURF
© 2025 SURF
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE
City logistics is one of the causes of today's road congestion in our cities, but at the same time its efficiency is affected by the traffic problems. The driving behaviour and mission strategies used by vans and lorries operating in urban areas usually does not exploit modern infomobility solutions. CityLog, a project co-funded by the European Commission within the 7th Framework Programme, aims at increasing the sustainability and the efficiency of urban goods deliveries through an adaptive and integrated mission management and by innovative vehicle features. More particularly, CityLog integrates a wide range of logistics-oriented infomobility services that include an optimized pre-trip planner, a new type of navigation system based on enhanced maps and a last mile parcel tracking service to avoid unsuccessful deliveries. © 2011 IEEE.
LINK
Several studies show that logistics facilities have spread spatially from relatively concentrated clusters in the 1970s to geographically more decentralized patterns away from urban areas. The literature indicates that logistics costs are one of the major influences on changes in distribution structures, or locations and usage of logistics facilities. Quantitative modelling studies that aim to describe or predict these phenomena in relation to logistics costs are lacking, however. This is relevant to design more effective policies concerning spatial development, transport and infrastructure investments as well as for understanding environmental consequences of freight transport. The objective of this paper is to gain an understanding of the responsiveness of spatial logistics patterns to changes in these costs, using a quantitative model that links production and consumption points via distribution centers. The model is estimated to reproduce observed use of logistics facilities as well as related transport flows, for the case of the Netherlands. We apply the model to estimate the impacts of a number of scenarios on the spatial spreading of regional distribution activity, interregional vehicle movements and commodity flows. We estimate new cost elasticities, of the demand for trade and transport together, as well as specifically for the demand for the distribution facility services. The relatively low cost elasticity of transport services and high cost elasticity for the distribution services provide new insights for policy makers, relevant to understand the possible impacts of their policies on land use and freight flows.