Dienst van SURF
© 2025 SURF
Within the context of the Iliad project, the authors present technical challenges and the first results of having valid 3D scenes of (non-)existing offshore wind farms procedurally and automatically generated within either the Unreal or Unity game engine. The Iliad – Digital Twins of the Ocean project (EU Horizon 2020) aims to develop a ‘system of systems’ for creating cutting-edge digital twins of specific sea and ocean areas for diverse purposes related to their sustainable use and protection. One of the Iliad pilots addresses the topic of offshore floating wind farm construction or maintenance scenario testing and validation using the Unity 3D game engine. This work will speed up the development of these scenarios by procedurally and automatically creating the Unity 3D scene rather than manually (which is done at present). The main technical challenges concern the data-driven approach, in which a JSON configuration file drives the scene creation. The first results show a base wind farm running in Unreal 5.1. The final product will be able to handle environmental conditions, biological conditions, and specific human activities as input parameters.
'The Post-digital Condition' is the opening essay from the essay collection by INC's Miriam Rasch, Swimming in the Ocean: Texts from a Post-digital World, to be published in Dutch by De Bezige Bij in June 2017. The translation was done by Nadia Palliser, the (analogue) photos come from project Wendepunkt by Maarten van Riel.
MULTIFILE
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.
The Hereon team has expressed interest in the use of the PO platform for the virtualization of the (hydro)dynamic behavior of offshore wind farms, in particular regarding turbidity around wind turbines. BUas has developed the Procedural Ocean (PO) platform. The platform uses procedural content generation (AI) for data-driven 3D virtualization of complex marine and maritime environments, with elements such as geo-environment (bathymery, etc.), geo-physics (weather conditions, waves), wind farms, aquaculture, shipping, ecology, and more. The virtual and immersive environment in the game engine Unreal supports advanced (game-like) user interaction for policy-oriented learning (marine spatial planning), ocean management, and decision making. We therefore propose a joint pilot Research and Development (R&D) project to explore, demonstrate and validate how a gridded dataset provided by Hereon can show the dynmics around wind farm monopiles. Furthermore, we can explore interactivity with the engineering and design of the turbine and the multiplication of the turbine design to compose a wind farm. Client: Hereon (The Helmholtz-Zentrum Hereon is a non-profit making research institute )