Dienst van SURF
© 2025 SURF
An important consideration for future age-friendly cities is that older people are able to live in housing appropriate for their needs. While thermal comfort in the home is vital for the health and well-being of older people, there are currently few guidelines about how to achieve this. This study is part of a research project that aims to improve the thermal environment of housing for older Australians by investigating the thermal comfort of older people living independently in South Australia and developing thermal comfort guidelines for people ageing-in-place. This paper describes the approach fundamental for developing the guidelines, using data from the study participants’ and the concept of personas to develop a number of discrete “thermal personalities”. Hierarchical Cluster Analysis (HCA) was implemented to analyse the features of research participants, resulting in six distinct clusters. Quantitative and qualitative data from earlier stages of the project were then used to develop the thermal personalities of each cluster. The thermal personalities represent dierent approaches to achieving thermal comfort, taking into account a wide range of factors including personal characteristics, ideas, beliefs and knowledge, house type, and location. Basing the guidelines on thermal personalities highlights the heterogeneity of older people and the context-dependent nature of thermal comfort in the home and will make the guidelines more user-friendly and useful. Original publication at MDPI: https://doi.org/10.3390/ijerph17228402 © 2020 by the authors. Licensee MDPI.
MULTIFILE
The thermal walk investigates the influence of urban design on the thermal experience of pedestrians moving through a certain urban area. Thermal walks are often used by scientists to understand how residents experience heat in urban environments. However, thermal walks can also be beneficial to urban professionals working at local governments that need to adapt urban areas to rising temperatures. Thermal walks can answer their questions such as: How hot is a shopping street, a residential area, a specific walking route through the city or a station area? Which adjustments are needed to create cool spaces? Which factors determine whether the outdoor space is hot or cool and which of these factors can be included in a heat-resilient design? A thermal walk reveals and lets participants experience which urban designs are hottest, coolest or most pleasant, and which factors play a role. Therefore, thermal walks can help urban professionals by:• Mapping the heat resilience of a specific area and understanding which adjustments can help to create cooler areas; and• Teaching them the phenomenon of urban heat and the factors that lead to a heat resilient design. On the 18th of June 2019, during the ‘We make the city’ festival, we used the thermal walk to investigate the heat resilience of the walking route on a former historic naval base in the city of Amsterdam, the Marineterrein. In addition, the thermal walk was accompanied by mini-lectures in order to teach the participants about the phenomenon of urban heat.
MULTIFILE
Thermal comfort is determined by the combined effect of the six thermal comfort parameters: temperature, air moisture content, thermal radiation, air relative velocity, personal activity and clothing level as formulated by Fanger through his double heat balance equations. In conventional air conditioning systems, air temperature is the parameter that is normally controlled whilst others are assumed to have values within the specified ranges at the design stage. In Fanger’s double heat balance equation, thermal radiation factor appears as the mean radiant temperature (MRT), however, its impact on thermal comfort is often ignored. This paper discusses the impacts of the thermal radiation field which takes the forms of mean radiant temperature and radiation asymmetry on thermal comfort, building energy consumption and air-conditioning control. Several conditions and applications in which the effects of mean radiant temperature and radiation asymmetry cannot be ignored are discussed. Several misinterpretations that arise from the formula relating mean radiant temperature and the operative temperature are highlighted, coupled with a discussion on the lack of reliable and affordable devices that measure this parameter. The usefulness of the concept of the operative temperature as a measure of combined effect of mean radiant and air temperatures on occupant’s thermal comfort is critically questioned, especially in relation to the control strategy based on this derived parameter. Examples of systems which deliver comfort using thermal radiation are presented. Finally, the paper presents various options that need to be considered in the efforts to mitigate the impacts of the thermal radiant field on the occupants’ thermal comfort and building energy consumption.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.