Dienst van SURF
© 2025 SURF
The importance of teaching engineering students innovation development is commonly clearly understood. It is essential to achieve products which are attractive and profitable in the market. To achieve this, an institute of engineering education has to provide students with needed knowledge, skills and attitudes including both technical and business orientation. This is important especially for SME’s. Traditionally, education of engineering provides students with basic understanding how to solve common technical problems. However companies need wider view to achieve new products. Universities of applied Sciences in Oulu and Eindhoven want to research what is the today’s educational situation for this aim, to find criteria to improve the content of the educational system, and to improve the educational system. Important stakeholders are teachers and students within the institute but also key-persons in companies. The research is realized by questionnaires and interviews from which a current situation can be found. The research will also include the opinion of management who give possibilities to change the curriculum. By this research more insight will be presented about how to re-design a current curriculum. The research will act as basis for this discussion in SEFI-conference about formulating a curriculum that includes elements for wide-ranging knowledge and skills to achieve innovations especially in SME’s.
International education is a relatively new field and until recently, there was no formal education to prepare practitioners. This means that people working in international education are a colourful and diverse group, coming from a wide range of disciplines, which definitely adds to the attraction of the field. I call international education a field rather than a discipline since it is composed of a variety of established disciplines, such as languages, educational sciences, psychology, business, anthropology, history and even, in my case, classical archaeology. For this lecture, I have chosen to return to my original discipline and discuss global learning as the stages of an archaeological excavation. Cutting though the subsequent layers represents a history of international education but also my own professional history. By digging deeper down, layer after layer, I hope to uncover the essence of global learning in order to make its benefits available for all our students. This lecture consists of four sections. In the first section, I want to go back to the time when archaeology was a new discipline and see what we can learn from the research conducted at that time. In the second section I will reveal the layers of internationalisation and global learning until we come to the layer that we are currently exploring. In the third section, I will look at some of the factors and trends that will have an impact on global learning in the years to come. This shows that circumstances are quite different from when the excavation started and that global education is therefore dynamic. Finally, I will discuss what research the Research Group Global Learning will conduct, how and with whom, in the coming years.
This article reflects on the workshop Bridging the KAP-gap in global education, which was part of the DEEEP-conference Global Justice through Global Citizenship. The objective of the workshop was, to learn about strategies to bridge the KAP (Knowledge, Attitude, Practice) -gap and to gain ideas how to apply these strategies to participants’ own practices. The workshop turned into a slightly different direction and raised some fundamental questions: What could one expect of global education? Which others factors influence learners’ behaviour? To which manner does global education aim to change behaviour? Should global education aim to change behaviour? This article summarizes the outcomes of an evaluation which was done amongst alumni-students of the minor programme Global Development Issues of Fontys University of Applied Sciences and the main issues that were discussed during the workshop, also based on the integrated model of behavioural prediction. The article ends with some lessons learned, especially for the curriculumowners of the minor programme, who organised this workshop.
MULTIFILE
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
In the context of global efforts to increase sustainability and reduce CO2 emissions in the chemical industry, bio-based materials are receiving increasing attention as renewable alternatives to petroleum-based polymers. In this regard, Visolis has developed a bio-based platform centered around the efficient conversion of plant-derived sugars to mevalonolactone (MVL) via microbial fermentation. Subsequently, MVL is thermochemically converted to bio-monomers such as isoprene and 3-methyl-1,5-pentane diol, which are ultimately used in the production of polymer materials. Currently, the Visolis process has been optimized to use high-purity, industrial dextrose (glucose) as feedstock for their fermentation process. Dutch Sustainable Development (DSD) has developed a direct processing technology in which sugar beets are used for fermentation without first having to go through sugar extraction and refinery. The main exponent of this technology is their patented Betaprocess, in which the sugar beet is essentially exposed to heat and a mild vacuum explosion, opening the cell walls and releasing the sugar content. This Betaprocess has the potential to speed up current fermentation processes and lower feedstock-related costs. The aim of this project is to combine aforementioned technologies to enable the production of mevalonolactone using sucrose, present in crude sugar beet bray after Betaprocessing. To this end, Zuyd University of Applied Sciences (Zuyd) intends to collaborate with Visolis and DSD. Zuyd will utilize its experience in both (bio)chemical engineering and fermentation to optimize the process from sugar beet (pre)treatment to product recovery. Visolis and DSD will contribute their expertise in microbial engineering and low-cost sugar production. During this collaboration, students and professionals will work together at the Chemelot Innovation and Learning Labs (CHILL) on the Brightlands campus in Geleen. This collaboration will not only stimulate innovation and sustainable chemistry, but also provides starting professionals with valuable experience in this expanding field.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.