Dienst van SURF
© 2025 SURF
Analyse the results from a representative selection of the supply chain studies for school feeding programmes in Kenya, Ghana and Mali, and make specific suggestions for interventions that can efficiently include SHF in the supply chains.
From the article: "Abstract Maintenance processes of Dutch housing associations are often still organized in a traditional manner. Contracts are based on lowest price instead of ‘best quality for lowest price’ considering users’ demands. Dutch housing associations acknowledge the need to improve their maintenance processes in order to lower maintenance cost, but are not sure how. In this research, this problem is addressed by investigating different supply chain partnering principles and the role of information management. The main question is “How can the organisation of maintenance processes of Dutch housing associations, in different supply chain partnering principles and the related information management, be improved?” The answer is sought through case study research."
Consumers expect product availability as well as product quality and safety in retail outlets. When designing or re-designing fruit and vegetables supply chain networks one has to take these demands into consideration next to traditional efficiency and responsiveness requirements. In food science literature, much attention has been paid to the development of Time-Temperature Indicators to monitor individually the temperature conditions of food products throughout distribution as well as quality decay models that are able to predict product quality based upon this information. This chapter discusses opportunities to improve the design and management of fruit and vegetables supply chain networks. If product quality in each step of the supply chain can be predicted in advance, good flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, higher product quality, and less product losses in retail. This chapter works towards a preliminary diagnostic instrument, which can be used to assess supply chain networks on QCL (Quality Controlled Logistics). Findings of two exploratory case studies, one on the tomato chain and one on the mango chain, are presented to illustrate the value of this concept. Results show the opportunities and bottlenecks for quality controlled logistics depend on product—(e.g. variability in quality), process—(e.g. ability to use containers and sort on quality), network- (e.g. current level of cooperation), and market characteristics (e.g. higher prices for better products).
The bio-transition will require mass mobilization of biomass for industrial feedstock, of which lignocellulose from agricultural residues is a promising sustainable source. Agricultural lignocellulosic residues (ALR) are available in varying densities across the EU and offer an opportunity to improve environmental outcomes in agriculture as well as in refining. While technologies are emerging, the future demands of industry for ALR are not understood, limiting the ability of biomass intermediaries to develop a supply chain. This project is a collaboration of Looop, BioGrowth Development (BD), and MNEXT, with the aim to quantify and characterize ALR in the EU and match it to expected demand from the refining industry. The spatial distribution of ALR, as well as the technical requirements of refineries, are critical components to developing a sustainable supply chain. Looop aspires to create circularity between ALRs and industry, and together with the biomass consulting experience of BD have approached MNEXT to leverage their knowledge of biorefinery applications. The focus of the project is to spatially model ALR availability across the EU and identify locations where mobilizing biomass for biorefining is most feasible according to technical, environmental, and logistical considerations. The one-year collaboration enables sufficient mapping, modeling, and exploration of parameters, with a focus on creating results applicable to a wide range of future scenarios. The project makes use of academic and industry knowledge to both create industry solutions and establish a starting point for further research.