Dienst van SURF
© 2025 SURF
Dit onderzoek wordt uitgevoerd binnen de onderzoekslijn Studentenwelzijn van het lectoraat Studiesucces. Onderzoek op het gebied van studentenwelzijn in Nederland is nog beperkt. Een van de doelen van de onderzoekslijn is daarom een bijdrage te leveren aan (praktijkgerichte) kennis over het welzijn van studenten. Dit onderzoek heeft als doel daar aan bij te dragen door 1) de stresservaring van studenten binnen Hogeschool Inholland te onderzoeken, 2) in kaart te brengen wat studenten helpt om met stress om te gaan, en 3) te onderzoeken wanneer studenten zich bevlogen voelen. Tevens is dit onderzoek een verkenning van de variabelen van het Student Wellbeing Model. De onderzoeksuitkomsten dienen aanknopingspunten te bieden voor vervolgonderzoek naar het welzijn van studenten in relatie tot studiesucces. Ten slotte, de inzichten die verkregen worden dienen uiteindelijk bij te dragen aan het tegengaan van een hoge mate van stress (en andere gerelateerde psychische klachten) bij studenten en aan het bevorderen van het welzijn van studenten.
Recent studies show that students increasingly suffer from psychological complaints, including a high degree of (study) stress. If stress persists for a long time, it can have negative consequences for your health and can lead to a burnout, for example. A possible buffer against stress and a positive counterpart of a burnout is engagement. This infographic contains the most important results of a study into stress among students.
The demanding environment that contemporary dance students are exposed to could result in high stress levels, which can influence injury susceptibility. Therefore, this study aims to investigate the association between stress and injuries. In the period between September 2016 and March 2020, four cohorts of first-year dance students (N = 186; mean age 19.21 ± 1.35 years) were followed for one academic year. Each month, general stress was assessed on a 0-100 visual analogous scale. The Oslo Sports Trauma Research Center Questionnaire on Health Problems was used on a monthly basis to monitor injuries. Injuries were defined as "all injuries" (i.e., any physical complaint irrespective of the need for medical attention or time-loss from dance) and "substantial injuries" (i.e., leading to moderate/severe/complete reductions in training volume or performance). Mann-Whitney tests were performed to measure differences in general stress levels between injured and injury-free students, while repeated-measures ANOVA were performed to investigate whether general stress scores increased before and during injury occurrence. The overall average monthly general stress score over all cohorts for all students was 39.81. The monthly general stress scores ranged from 31.75 to 49.16. Overall, injured and substantially injured students reported higher stress scores than injury-free students, with significant differences in 3 out of the 9 months for all injuries (September, October, March, p < 0.05), and in 5 months for substantial injuries (September, October, November, December, April, p < 0.05). Within the 3-month period before and during injury occurrence, a (marginally) significant linear effect of general stress across the time periods was found for all injuries [F(1.87,216.49) = 3.10, p = 0.051] and substantial injuries [F(2,138) = 4.16, p = 0.018]. The results indicate an association between general stress and injuries. Future research should focus on effects of varying stress levels on injury risk using higher sampling frequency, for instance by measuring weekly since stress levels are likely to fluctuate daily. Practically, strategies aiming at stress reduction might have the potential to reduce the burden of dance injuries and may have positive outcomes for dancers, teachers, schools, and companies.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Our unilateral diet has resulted in a deficiency of specific elements/components needed for well-functioning of the human body. Especially the element magnesium is low in our processed food and results in neuronal and muscular malfunctioning, problems in bone heath/strength, and increased chances of diabetes, depression and cardiovascular diseases. Furthermore, it has also been recognized that magnesium plays an important role in cognitive functioning (impairment and enhancement), especially for people suffering from neurodegenerative diseases (Parkinson disease, Alzheimer, etc). Recently, it has been reported that magnesium addition positively effects sleep and calmness (anti-stress). In order to increase the bioavailability of magnesium cations, organic acids such as citrate, glycerophosphate and glycinate are often used as counterions. However, the magnesium supplements that are currently on the market still suffer from low bio-availability and often do not enter the brain significantly.The preparation of dual/multiple ligands of magnesium in which the organic acid not only functions as a carrier but also has synergistically/complementary biological effects is widely unexplored and needs further development. As a result, there is a strong need for dual/multiple magnesium supplements that are non-toxic, stable, prepared via an economically and ecologically attractive route, resulting in high bioavailability of magnesium in vivo, preferably positively influencing cognition/concentration
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.