Dienst van SURF
© 2025 SURF
Objective:Acknowledging study limitations in a scientific publication is a crucial element in scientific transparency and progress. However, limitation reporting is often inadequate. Natural language processing (NLP) methods could support automated reporting checks, improving research transparency. In this study, our objective was to develop a dataset and NLP methods to detect and categorize self-acknowledged limitations (e.g., sample size, blinding) reported in randomized controlled trial (RCT) publications.Methods:We created a data model of limitation types in RCT studies and annotated a corpus of 200 full-text RCT publications using this data model. We fine-tuned BERT-based sentence classification models to recognize the limitation sentences and their types. To address the small size of the annotated corpus, we experimented with data augmentation approaches, including Easy Data Augmentation (EDA) and Prompt-Based Data Augmentation (PromDA). We applied the best-performing model to a set of about 12K RCT publications to characterize self-acknowledged limitations at larger scale.Results:Our data model consists of 15 categories and 24 sub-categories (e.g., Population and its sub-category DiagnosticCriteria). We annotated 1090 instances of limitation types in 952 sentences (4.8 limitation sentences and 5.5 limitation types per article). A fine-tuned PubMedBERT model for limitation sentence classification improved upon our earlier model by about 1.5 absolute percentage points in F1 score (0.821 vs. 0.8) with statistical significance (). Our best-performing limitation type classification model, PubMedBERT fine-tuning with PromDA (Output View), achieved an F1 score of 0.7, improving upon the vanilla PubMedBERT model by 2.7 percentage points, with statistical significance ().Conclusion:The model could support automated screening tools which can be used by journals to draw the authors’ attention to reporting issues. Automatic extraction of limitations from RCT publications could benefit peer review and evidence synthesis, and support advanced methods to search and aggregate the evidence from the clinical trial literature.
MULTIFILE
A considerable amount of literature has been published on Corporate Reputation, Branding and Brand Image. These studies are extensive and focus particularly on questionnaires and statistical analysis. Although extensive research has been carried out, no single study was found which attempted to predict corporate reputation performance based on data collected from media sources. To perform this task, a biLSTM Neural Network extended with attention mechanism was utilized. The advantages of this architecture are that it obtains excellent performance for NLP tasks. The state-of-the-art designed model achieves highly competitive results, F1 scores around 72%, accuracy of 92% and loss around 20%.
Objective: To annotate a corpus of randomized controlled trial (RCT) publications with the checklist items of CONSORT reporting guidelines and using the corpus to develop text mining methods for RCT appraisal. Methods: We annotated a corpus of 50 RCT articles at the sentence level using 37 fine-grained CONSORT checklist items. A subset (31 articles) was double-annotated and adjudicated, while 19 were annotated by a single annotator and reconciled by another. We calculated inter-annotator agreement at the article and section level using MASI (Measuring Agreement on Set-Valued Items) and at the CONSORT item level using Krippendorff's α. We experimented with two rule-based methods (phrase-based and section header-based) and two supervised learning approaches (support vector machine and BioBERT-based neural network classifiers), for recognizing 17 methodology-related items in the RCT Methods sections. Results: We created CONSORT-TM consisting of 10,709 sentences, 4,845 (45%) of which were annotated with 5,246 labels. A median of 28 CONSORT items (out of possible 37) were annotated per article. Agreement was moderate at the article and section levels (average MASI: 0.60 and 0.64, respectively). Agreement varied considerably among individual checklist items (Krippendorff's α= 0.06–0.96). The model based on BioBERT performed best overall for recognizing methodology-related items (micro-precision: 0.82, micro-recall: 0.63, micro-F1: 0.71). Combining models using majority vote and label aggregation further improved precision and recall, respectively. Conclusion: Our annotated corpus, CONSORT-TM, contains more fine-grained information than earlier RCT corpora. Low frequency of some CONSORT items made it difficult to train effective text mining models to recognize them. For the items commonly reported, CONSORT-TM can serve as a testbed for text mining methods that assess RCT transparency, rigor, and reliability, and support methods for peer review and authoring assistance. Minor modifications to the annotation scheme and a larger corpus could facilitate improved text mining models. CONSORT-TM is publicly available at https://github.com/kilicogluh/CONSORT-TM.