Dienst van SURF
© 2025 SURF
People tend to use the same door every time they enter and exit a building. When certainentrances are widely preferred over others, congestion can occur. This paper describes twointerventions to persuade visitors to use another entrance. The first intervention used sensory deprivation (darkness), and the second used guidance paths. The first intervention on sensory deprivation had the expected outcome. This intervention resulted in an avoidance of the darkened door. The second intervention had a result contrary to the expectations; it resulted in an increased preference for the door without guidance paths.
MULTIFILE
The creation of artifacts is one of the factors that make us human. Artifacts contribute to our continual adaptation to the world by permitting better knowledge and control of it. The focus of this chapter is on the role of one specific kind of artifact: sensors. In contrast to our immediate perception of the world from our senses, sensors provide large amount of reliable measurements of the physical world that enhance human cognitive capacities in overcoming our perceptual limitations. However, “raw” sensor data require interpretation that relies on different types of expertise and knowledge to provide relevant meaning for human (adaptive) purposes. We suggest that a cognitive approach to understanding the differences between the different types of knowledge provided by current sensors as artifacts and the human senses is of interest. This approach questions the conception of human cognition as an analytic system of processing information from the world rather than as one which interprets and gives meanings to the world. We posit that understanding the differences between human and artificial sensors can shape a new era of technological advancement that is uniquely collaborative insofar as it would rely on the partnership of scientists working in the Humanities and in the Natural Sciences. In this article we provide some data from cognitive research that outline the beginnings of a pluridisciplinary endeavor to conceive sensors which integrate performances of artifacts and the diversity and richness of human cognition, with the goal of transforming so-called “intelligent” devices into cognitive sensors.
LINK
Background The purpose of this study is to describe feasibility and test–retest reliability of the six-minute walking distance test (6MWD) and an adapted shuttle run test (aSRT) in persons with severe intellectual and sensory (multiple) disabilities. Materials and Methods Forty-seven persons with severe multiple disabilities, with Gross Motor Function Classification System (GMFCS) grade I and II and wearing a heart rate monitor, performed the 6MWD and the aSRT twice. Results Ninety-six per cent of the participants completed both tests successfully. Wilcoxon signed-rank test revealed no significant differences between test and retest (P < 0.05). Intraclass correlation coefficients for all variables were ≥0.90. Limits of agreement for aSRT in GMFCS II subjects were insufficient. Conclusion Six-minute walking distance test is feasible and reliable for measuring functional exercise capacity in GMFCS I and II participants with severe multiple disabilities. aSRT is feasible and reliable for measuring aerobic capacity in GMFCS I participants. Compared with others, participants with severe multiple disabilities achieved poor results in 6MWD.
This project develops a European network for transdisciplinary innovation in artistic engagement as a catalyst for societal transformation, focusing on immersive art. It responds to the professionals in the field’s call for research into immersive art’s unique capacity to ‘move’ people through its multisensory, technosocial qualities towards collective change. The project brings together experts leading state-of-the-art research and practice in related fields with an aim to develop trajectories for artistic, methodological, and conceptual innovation for societal transformation. The nascent field of immersive art, including its potential impact on society, has been identified as a priority research area on all local-to-EU levels, but often suffers from the common (mis)perception as being technological spectacle prioritising entertainment values. Many practitioners create immersive art to enable novel forms of creative engagement to address societal issues and enact change, but have difficulty gaining recognition and support for this endeavour. A critical challenge is the lack of knowledge about how their predominantly sensuous and aesthetic experience actually lead to collective change, which remains unrecognised in the current systems of impact evaluation predicated on quantitative analysis. Recent psychological insights on awe as a profoundly transformative emotion signals a possibility to address this challenge, offering a new way to make sense of the transformational effect of directly interacting with such affective qualities of immersive art. In parallel, there is a renewed interest in the practice of cultural mediation, which brings together different stakeholders to facilitate negotiation towards collective change in diverse domains of civic life, often through creative engagements. Our project forms strategic grounds for transdisciplinary research at the intersection between these two developments. We bring together experts in immersive art, psychology, cultural mediation, digital humanities, and design across Europe to explore: How can awe-experiences be enacted in immersive art and be extended towards societal transformation?
About half of the e-waste generated in The Netherlands is properly documented and collected (184kT in 2018). The amount of PCBs in this waste is projected to be about 7kT in 2018 with a growth rate of 3-4%. Studies indicate that a third of the weight of a PCB is made or recoverable and critical metals which we need as resources for the various societal challenges facing us in the future. Recycling a waste PCB today means first shredding it and then processing it for material recovery mostly via non-selective pyrometallurgical methods. Sorting the PCBs in quality grades (wastebins) before shredding would however lead to more flexibility in selecting when and which recovery metallurgy is to be used. The yield and diversity of the recovered metals increases as a result, especially when high-grade recycling techniques are used. Unfortunately, the sorting of waste PCBs is not easily automated as an experienced operator eye is needed to classify the very inhomogeneous waste-PCB stream in wastebins. In this project, a knowledge institution partners with an e-waste processor, a high-grade recycling technology startup and a developer of waste sorting systems to investigate the efficiency of methods for sensory sorting of waste PCBs. The knowledge gained in this project will lead towards a waste PCB sorting demonstrator as a follow-up project.