Dienst van SURF
© 2025 SURF
In this chapter, we discuss the education of secondary school mathematics teachers in the Netherlands. There are different routes for qualifying as a secondary school mathematics teacher. These routes target different student teacher populations, ranging from those who have just graduated from high school to those who have already pursued a career outside education or working teachers who want to qualify for teaching in higher grades. After discussing the complex structure this leads to, we focus on the aspects that these different routes have in common. We point out typical characteristics of Dutch school mathematics and discuss the aims and challenges in teacher education that result from this. We give examples of different approaches used in Dutch teacher education, which we link to a particular model for designing vocational and professional learning environments.We end the chapter with a reflection on the current situation.
LINK
This study explored the dimensionality and measurement invariance of a multidimensional measure for evaluating teachers’ perceptions of the quality of their relationships with principals at the dyadic level. Participants were 630 teachers (85.9% female) from 220 primary and 204 secondary schools across the Netherlands. Teachers completed the 10-item Principal–Teacher Relationship Scale (PTRS) for their principals. Confirmatory factor analyses (CFA) provided evidence for a two-factor model, including a relational Closeness and Conflict dimension. Additionally, multigroup CFA results indicated strong invariance of the PTRS across school type, teacher gender, and teaching experience. Last, secondary school teachers and highly experienced teachers reported lower levels of Closeness and higher levels of Conflict in the relationship with their principal compared to primary school teachers and colleagues with less experience. Accordingly, the PTRS can be considered a valid and reliable measure that adds to the methodological repertoire of educational leadership research by focusing on both positive and negative aspects of dyadic principal–teacher relationships.
Purpose: Adolescents are the least likely to seek help for their mental health problems. School may be an important route to improve early recognition of adolescents with mental health problems in need for support, but little is known about the barriers to school support.Materials and methods: Data were collected in a longitudinal cohort study of Dutch adolescents (age 12–16) in secondary school (n = 956). We assessed the relation between level of psychosocial problems at the beginning of the school year (T1) and the support used in school at the end of that school year (T2), whether the willingness to talk to others (measured at T1) mediates this relation, and whether stigma towards help-seeking (T1) moderates this mediation.Results: Adolescents with more psychosocial problems were more likely to use support in school and were less willing to talk to others about their problems, but the willingness to talk to others was not a mediator. Stigma moderated the relationship between psychosocial problems and willingness to talk to others.Conclusions: Most adolescents with psychosocial problems get support in Dutch secondary school regardless of their willingness to talk to others about their problems. However, perceiving stigma towards help-seeking makes it less likely for someone to talk about their problems.
Effectiveness of Supported Education for students with mental health problems, an experimental study.The onset of mental health problems generally occurs between the ages of 16 and 23 – the years in which young people follow postsecondary education, which is a major channel in ourso ciety to prepare for a career and enhance life goals. Several studies have shown that students with mental health problems have a higher chance of early school leaving. Supported Education services have been developed to support students with mental health to remain at school. The current project aims to study the effect of an individually tailored Supported Education intervention on educational and mental health outcomes of students with mental health problems at a university of applied sciences and a community college. To that end, a mixed methods design will be used. This design combines quantitative research (Randomized Controlled Trial) with qualitative research (focus groups, monitoring, interviews). 100 students recruited from the two educational institutes will be randomly allocated to either the intervention or control group.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
CRYPTOPOLIS is a project supported by EU which focuses on the financial management knowledge of teachers and the emerging field of risk management and risk analysis of cryptocurrencies. Cryptocurrency has shown to be a vital and rapidly growing component in today’s digital economy therefore there is a need to include not just financial but also crypto literacy into the schools. Beside multiple investors and traders the market is attracting an increasing number of young individuals, viewing it as an easy way to make money. A large pool of teenagers and young adults want to hop on this train, but a lack of cryptocurrency literacy, as well as financial literacy in general amongst youth, together with their inexperience with investing makes them even more vulnerable to an already high-risk investment.Therefore, we aim to increase the capacity and readiness of secondary schools and higher educational institutions to manage an effective shift towards digital education in the field of crypto and financial literacy. The project will develop the purposeful use of digital technologies in financial and crypto education for teaching, learning, assessment and engagement.