Dienst van SURF
© 2025 SURF
Dynamic stall phenomena carry the risk of negative damping and instability in wind turbine blades. It is crucial to model these phenomena accurately to reduce inaccuracies in predicting design driving (fatigue and extreme) loads. Some of the inaccuracies in current dynamic stall models may be due to the fact that they are not properly designed for high angles of attack and that they do not specifically describe vortex shedding behaviour. The Snel second-order dynamic stall model attempts to explicitly model unsteady vortex shedding. This model could therefore be a valuable addition to a turbine design software such as Bladed. In this paper the model has been validated with oscillating aerofoil experiments, and improvements have been proposed for reducing inaccuracies. The proposed changes led to an overall reduction in error between the model and experimental data. Furthermore the vibration frequency prediction improved significantly. The improved model has been implemented in Bladed and tested against small-scale turbine experiments at parked conditions. At high angles of attack the model looks promising for reducing mismatches between predicted and measured (fatigue and extreme) loading, leading to possible lower safety factors for design and more cost-efficient designs for future wind turbines.
LINK
Dynamic stall phenomena bring risk for negative damping and instability in wind turbine blades. It is crucial to model these phenomena accurately to reduce inaccuracies in predicting design driving (fatigue) loads. Inaccuracies in currentdynamic stall models may be due to the facts that they are not properly designed for high angles of attack, and that they do not 10 specifically describe vortex shedding behaviour. The Snel second order dynamic stall model attempts to explicitly model unsteady vortex shedding. This model could therefore be a valuable addition to DNV GL’s turbine design software Bladed. In this thesis the model has been validated with oscillating airfoil experiments and improvements have been proposed for reducing inaccuracies. The proposed changes led to an overall reduction in error between the model and experimental data. Furthermore the vibration frequency prediction improved significantly. The improved model has been implemented in Bladed and tested 15 against small scale turbine experiments at parked conditions. At high angles of attack the model looks promising for reducing mismatches between predicated and measured (fatigue) loading. Leading to possible lower safety factors for design and more cost efficient designs for future wind turbines.
A previous study found a variety of unusual sexual interests to cluster in a five-factor structure, namely submission/masochism, forbidden sexual activities, dominance / sadism, mysophilia, and fetishism (Schippers et al., 2021). The current study was an empirical replication to examine whether these findings generalized to a representative population sample. An online, anonymous sample (N = 256) representative of the Dutch adult male population rated 32 unusual sexual interests on a scale from 1 (very unappealing) to 7 (very appealing). An exploratory factor analysis assessed whether similar factors would emerge as in the original study. A subsequent confirmatory factor analysis served to confirm the factor structure. Four slightly different factors of sexual interest were found: extreme, illegal and mysophilic sexual activities; light BDSM without real pain or suffering; heavy BDSM that may include pain or suffering; and illegal but lower-sentenced and fetishistic sexual activities. The model fit was acceptable. The representative replication sample was more sexually conservative and showed less sexual engagement than the original convenience sample. On a fundamental level, sexual interest in light BDSM activities and extreme, forbidden, and mysophilic activities seem to be relatively separate constructs.