Dienst van SURF
© 2025 SURF
In this paper, the importance of modern technology in forensic investigations is discussed. Recent technological developments are creating new possibilities to perform robust scientific measurements and studies outside the controlled laboratory environment. The benefits of real-time, on-site forensic investigations are manifold and such technology has the potential to strongly increase the speed and efficacy of the criminal justice system. However, such benefits are only realized when quality can be guaranteed at all times and findings can be used as forensic evidence in court. At the Netherlands Forensic Institute, innovation efforts are currently undertaken to develop integrated forensic platform solutions that allow for the forensic investigation of human biological traces, the chemical identification of illicit drugs and the study of large amounts of digital evidence. These platforms enable field investigations, yield robust and validated evidence and allow for forensic intelligence and targeted use of expert capacity at the forensic institutes. This technological revolution in forensic science could ultimately lead to a paradigm shift in which a new role of the forensic expert emerges as developer and custodian of integrated forensic platforms.
Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from 1994 to 2011. The integrated curricula were categorized according to a taxonomy of integration types synthesized from the literature. The characteristics that we deemed important were related to learning outcomes and success/fail factors. A focus group was formed to facilitate the process of analysis and to test tentative conclusions. We concluded that the levels in our taxonomy were linked to (a) student knowledge and skills, the enthusiasm generated among students and teachers, and the teacher commitment that was generated; and (b) the teacher commitment needed, the duration of the innovation effort, the volume and comprehensiveness of required teacher professional development, the necessary teacher support, and the effort needed to overcome tensions with standard curricula. Almost all projects were effective in increasing the time spent on science at school. Our model resolves Czerniac’s definition problem of integrating curricula in a productive manner, and it forms a practical basis for decision-making by making clear what is needed and what output can be expected when plans are being formulated to implement integrated education.
Abstract: Background: Chronic obstructive pulmonary disease (COPD) and asthma have a high prevalence and disease burden. Blended self-management interventions, which combine eHealth with face-to-face interventions, can help reduce the disease burden. Objective: This systematic review and meta-analysis aims to examine the effectiveness of blended self-management interventions on health-related effectiveness and process outcomes for people with COPD or asthma. Methods: PubMed, Web of Science, COCHRANE Library, Emcare, and Embase were searched in December 2018 and updated in November 2020. Study quality was assessed using the Cochrane risk of bias (ROB) 2 tool and the Grading of Recommendations, Assessment, Development, and Evaluation. Results: A total of 15 COPD and 7 asthma randomized controlled trials were included in this study. The meta-analysis of COPD studies found that the blended intervention showed a small improvement in exercise capacity (standardized mean difference [SMD] 0.48; 95% CI 0.10-0.85) and a significant improvement in the quality of life (QoL; SMD 0.81; 95% CI 0.11-1.51). Blended intervention also reduced the admission rate (relative ratio [RR] 0.61; 95% CI 0.38-0.97). In the COPD systematic review, regarding the exacerbation frequency, both studies found that the intervention reduced exacerbation frequency (RR 0.38; 95% CI 0.26-0.56). A large effect was found on BMI (d=0.81; 95% CI 0.25-1.34); however, the effect was inconclusive because only 1 study was included. Regarding medication adherence, 2 of 3 studies found a moderate effect (d=0.73; 95% CI 0.50-0.96), and 1 study reported a mixed effect. Regarding self-management ability, 1 study reported a large effect (d=1.15; 95% CI 0.66-1.62), and no effect was reported in that study. No effect was found on other process outcomes. The meta-analysis of asthma studies found that blended intervention had a small improvement in lung function (SMD 0.40; 95% CI 0.18-0.62) and QoL (SMD 0.36; 95% CI 0.21-0.50) and a moderate improvement in asthma control (SMD 0.67; 95% CI 0.40-0.93). A large effect was found on BMI (d=1.42; 95% CI 0.28-2.42) and exercise capacity (d=1.50; 95% CI 0.35-2.50); however, 1 study was included per outcome. There was no effect on other outcomes. Furthermore, the majority of the 22 studies showed some concerns about the ROB, and the quality of evidence varied. Conclusions: In patients with COPD, the blended self-management interventions had mixed effects on health-related outcomes, with the strongest evidence found for exercise capacity, QoL, and admission rate. Furthermore, the review suggested that the interventions resulted in small effects on lung function and QoL and a moderate effect on asthma control in patients with asthma. There is some evidence for the effectiveness of blended self-management interventions for patients with COPD and asthma; however, more research is needed. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019119894; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=119894
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.