Dienst van SURF
© 2025 SURF
The main question that leads the focus in this study is: What is the contribution of the school environment to the resilience of middle-adolescent students? Before going into the background and rationale of this study I will specify the terms used in this research question: - Contribution: In this study I will use the dynamic term contribution instead of the term effect because I will not measure the causal influence in a statistical way but I will explore the relationship between school environment and middle-adolescents resilience in terms of dynamic, reciprocal interactions. - School environment: With the term school environment I refer to all possible aspects of the immediate environment constituted by the school as a system in which the middle-adolescent is interactively participating. These aspects can include teachers as well as the school building as well as the lunch breaks and extramural activities. No framed description of this term will be postulated beforehand because the school environment will be studied from the viewpoint of the middle-adolescents. It is the middle-adolescents description of the term school environment that is the focus of this study. - Resilience: Before constructing the term resilience in a detailed manner in Chapter Two I will use the term to denote the ability to bounce back after stressful experiences. - Middle-adolescent: a 14-or 15-year old girl or boy. I will elaborate on the reason for the focus on this age group in paragraph 2.1.
Introduction: The health-promoting school (HPS) approach was developed by the World Health Organization to create health promotion changes in the whole school system. Implementing the approach can be challenging for schools because schools are dynamic organizations with each a unique context. Many countries worldwide have a health promotion system in place in which healthy school (HS) advisors support schools in the process of implementing the HPS approach. Even though these HS advisors can take on various roles to provide support in an adaptive and context-oriented manner, these roles have not yet been described. The current study aims to identify and describe the key roles of the HS advisor when supporting schools during the dynamic process of implementing the HPS approach. Methods: The study was part of a project in which a capacity-building module was developed for and with HS advisors in the Netherlands. In the current study, a co-creation process enabled by participatory research was used in which researchers, HS advisors, national representatives, and coordinators of the Dutch HS program participated. Co-creation processes took place between October 2020 and November 2021 and consisted of four phases: (1) a narrative review of the literature, (2) interviews, (3) focus groups, and (4) a final check. Results: Five roles were identified. The role of “navigator” as a more central one and four other roles: “linking pin,” “expert in the field,” “critical friend,” and “ambassador of the HPS approach.” The (final) description of the five roles was recognizable for the HS advisors that participated in the study, and they indicated that it provided a comprehensive overview of the work of an HS advisor in the Netherlands. Discussion: The roles can provide guidance to all Dutch HS advisors and the regional public health organizations that employ them on what is needed to provide sufficient and context-oriented support to schools. These roles can inspire and guide people from other countries to adapt the roles to their own national context.
The central aim of this thesis was to increase understanding of designing vocational learning environments at the school–work boundary. Four studies were conducted, focusing on learning environment designs at the school–work boundary and on design considerations of the actors involved in their construction, both from the world of school and the world of work.
Verschillende maatschappelijke veranderingen dwingen de bouwbranche tot innovaties. Ondanks de potentie op het vlak van circulariteit en duurzaamheid van 3D-printen met kunststoffen kent deze technologie nog nauwelijks toepassingen in de bouw. Redenen hiervoor zijn achterblijvende materiaaleigenschappen en het verschil in cultuur tussen de bouwwereld en kunststofverwerkende industrie. Het bedrijf Phidias, richt zich op innovatieve en creatieve vastgoedconcepten. Samen met Zuyd Hogeschool (Zuyd) willen zij onderzoek doen naar het printen van bouwelementen waarbij de meerwaarde van 3D-printen wordt gezien in het combineren van materiaaleigenschappen. Zuyd heeft afgelopen jaren veel onderzoek gedaan naar het ontwikkelen van materialen voor 3D-printen (o.a. 2014-01-96 PRO). De volgende fase is de opgedane kennis toe te passen voor specifieke applicaties, in dit geval om de vraag van het MKB bedrijf Phidias te beantwoorden. Vanuit een ander MKB-bedrijf, MaukCC, ontwikkelaar van 3D printers, komt de vraag om de afstemming tussen materialen en hardware te optimaliseren. De combinatie van beide vragen uit het werkveld en de expertise bij Zuyd heeft geleid tot dit projectvoorstel. In deze pilotstudie ligt de focus voornamelijk op het 3D printen van één specifiek bouwkundig element met meerdere eigenschappen (bouwfysisch en constructief). De combinatie van eigenschappen wordt verkregen door gebruik te maken van twee (biobased) kunststoffen waarbij tevens een variatie wordt aangebracht in de geprinte structuren. Op deze manier kunnen grondstoffen worden gespaard. Het onderzoek sluit aan bij twee zwaartepunten van Zuyd, namelijk “Transitie naar een duurzaam gebouwde omgeving” en “Life science & materials”. De interdisciplinaire aanpak, op het grensvlak van de lectoraten “Material Sciences” (Gino van Strydonck) en “Sustainable Energy in the Built Environment” (Zeger Vroon) staat garant voor innovatief onderzoek. Integratie van onderwijs en onderzoek vindt plaats door studenten samen met een coach (docent) en ervaren professional aan dit onderzoek te laten werken in Communities for Development (CfD’s).
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.
The textile and clothing sector belongs to the world’s biggest economic activities. Producing textiles is highly energy-, water- and chemical-intensive and consequently the textile industry has a strong impact on environment and is regarded as the second greatest polluter of clean water. The European textile industry has taken significant steps taken in developing sustainable manufacturing processes and materials for example in water treatment and the development of biobased and recycled fibres. However, the large amount of harmful and toxic chemicals necessary, especially the synthetic colourants, i.e. the pigments and dyes used to colour the textile fibres and fabrics remains a serious concern. The limited range of alternative natural colourants that is available often fail the desired intensity and light stability and also are not provided at the affordable cost . The industrial partners and the branch organisations Modint and Contactgroep Textiel are actively searching for sustainable alternatives and have approached Avans to assist in the development of the colourants which led to the project Beauti-Fully Biobased Fibres project proposal. The objective of the Beauti-Fully Biobased Fibres project is to develop sustainable, renewable colourants with improved light fastness and colour intensity for colouration of (biobased) man-made textile fibres Avans University of Applied Science, Zuyd University of Applied Sciences, Wageningen University & Research, Maastricht University and representatives from the textile industry will actively collaborate in the project. Specific approaches have been identified which build on knowledge developed by the knowledge partners in earlier projects. These will now be used for designing sustainable, renewable colourants with the improved quality aspects of light fastness and intensity as required in the textile industry. The selected approaches include refining natural extracts, encapsulation and novel chemical modification of nano-particle surfaces with chromophores.