Dienst van SURF
© 2025 SURF
Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this paper presents: (1) a set of safety requirements generated from the application of the Systems Theoretic Process Analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, and drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights.
The pervasiveness of wearable technology has opened the market for products that analyse running biomechanics and provide feedback to the user. To improve running technique feedback should target specific running biomechanical key points and promote an external focus. Aim for this study was to define and empirically test tailored feedback requirements for optimal motor learning in four consumer available running wearables. First, based on desk research and observations of coaches, a screening protocol was developed. Second, four wearables were tested according to the protocol. Third, results were reviewed, and four experts identified future requirements. Testing and reviewing the selected wearables with the protocol revealed that only two less relevant running biomechanical key points were measured. Provided feedback promotes an external focus of the user. Tailoring was absent in all wearables. These findings indicate that consumer available running wearables have a potential for optimal motor learning but need improvements as well.
The following report aims to introduce the main me2 specifications, and to describe the requirements needed to develop the me2 project. Me2 is a technological platform where the behaviours related to energy consumption could be monitored, and also to increase the energy efficiency.In order to have a better understanding about the use of that kind of platforms, a brief literature review is firstly presented, where some of the main behaviour changing mechanisms practices are highlighted. Also, a policy analysis was developed to give an extended overview of the existing market structures and barriers, as well as, the technical features that are relevant for the development of a venture like me2.The report will end with a detailed description of what the me2 user will be like. This information is mostly based on the pre-pilot survey and on a cross-cultural analysis between Portugal and the Netherlands. This comparison is fundamental for a better understanding about the target community used in this project. Concerning to the functional systems requirements, they are also described in this report, giving special attention to what is called me2 Logic, that includes the front-end platform, back-end activities, and the algorithms to user engagement.Therefore, this report delivers, in a very detailed way, all the reviewed information and procedures needed to be determined prior to the platform’s establishment, and regarding its implementation for the project’s first pilot in Lisbon.
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.
The projectThe overarching goal of DIGNITY, DIGital traNsport In and for socieTY, is to foster a sustainable, integrated and user-friendly digital travel eco-system that improves accessibility and social inclusion, along with the travel experience and daily life of all citizens. The project delves into the digital transport eco-system to grasp the full range of factors that might lead to disparities in the uptake of digitalised mobility solutions by different user groups in Europe. Analysing the digital transition from both a user and provider’s perspective, DIGNITY looks at the challenges brought about by digitalisation, to then design, test and validate the DIGNITY approach, a novel concept that seeks to become the ‘ABCs for a digital inclusive travel system’. The approach combines proven inclusive design methodologies with the principles of foresight analysis to examine how a structured involvement of all actors – local institutions, market players, interest groups and end users – can help bridge the digital gap by co-creating more inclusive mobility solutions and by formulating user-centred policy frameworks.The objectivesThe idea is to support public and private mobility providers in conceiving mainstream digital products or services that are accessible to and usable by as many people as possible, regardless of their income, social situation or age; and to help policy makers formulate long-term strategies that promote innovation in transport while responding to global social, demographic and economic changes, including the challenges of poverty and migration.The missionBy focusing on and involving end-users throughout the process of designing policies, products, or services, it is possible to reduce social exclusion while boosting new business models and social innovation. The end result that DIGNITY is aiming for is an innovative decision support tool that can help local and regional decision-makers formulate digitally inclusive policies and strategies, and digital providers design more inclusive products and services.The approachThe DIGNITY approach combines analysis with concrete actions to make digital mobility services inclusive over the long term. The approach connects users’ needs and requirements with the provision of mobility services, and at the same time connects those services to the institutional framework. It is a multi-phase process that first seeks to understand and bridge the digital gap, and then to test, evaluate and fine-tune the approach, so that it can be applied in other contexts even after the project’s end.Partners: ISINNOVA (Italy), Mobiel 21 (Belgium), Universitat Politechnica deCatalunya Spain), IZT (Germany), University of Cambridge (UK), Factualconsulting (Spain), Barcelona Regional Agencia (Spain), City of Tilburg(Netherlands), Nextbike (Germany), City of Ancona (Italy), MyCicero (Italy),Conerobus (Italy), Vlaams Gewest (Belgium)