Presented at the International Conference on Flexible Automation and Intelligent Manufacturing (FAIM) 23 - 26 June 2015 at the University of Wolverhampton, UK. Authorsupplied abstract: ABSTRACT Customized, on-demand manufacturing is growing through the use of new paradigms and technologies. Agile Manufacturing, cyber physical systems, and reconfigurable systems are examples of these changes. To provide high-mix, low-volume production there is a need for dynamic behaviour and manufacturing machines that can handle a large variety of services. Manufacturing systems can be made more dynamic by using agent-based technology. However, the reconfigurable aspect of these machines has yet to be explored. This paper investigates the possibility to adapt, i.e., reconfigure the hardware of manufacturing machines based on the current manufacturing demand. Using a simulation for a working agent-based platform with reconfiguration capabilities, this paper validates the effects of reconfigurable hardware to change capacity when producing a variety of products in a dynamic production environment. The paper continues to investigate required strategies to effectively use reconfiguration and counter the effects of disturbances that are likely to happen in such systems.
LINK
Presented at the International Conference on Flexible Automation and Intelligent Manufacturing (FAIM) 23 - 26 June 2015 at the University of Wolverhampton, UK. Authorsupplied abstract: ABSTRACT Customized, on-demand manufacturing is growing through the use of new paradigms and technologies. Agile Manufacturing, cyber physical systems, and reconfigurable systems are examples of these changes. To provide high-mix, low-volume production there is a need for dynamic behaviour and manufacturing machines that can handle a large variety of services. Manufacturing systems can be made more dynamic by using agent-based technology. However, the reconfigurable aspect of these machines has yet to be explored. This paper investigates the possibility to adapt, i.e., reconfigure the hardware of manufacturing machines based on the current manufacturing demand. Using a simulation for a working agent-based platform with reconfiguration capabilities, this paper validates the effects of reconfigurable hardware to change capacity when producing a variety of products in a dynamic production environment. The paper continues to investigate required strategies to effectively use reconfiguration and counter the effects of disturbances that are likely to happen in such systems.
LINK
Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new approach with a combination of high performance software and intelligent systems. Other case studies have used hybrid and intelligent systems in software before. However, they were mainly used to improve the logistic processes and are not commonly used within the hardware control loop. This paper introduces a case study on flexible and hybrid software architecture, which uses prototype manufacturing machines called equiplets. These systems should be applicable for the industry and are able to dynamically adapt to changes in the product as well as changes in the manufacturing systems. This is done by creating self-configurable machines which use intelligent control software, based on agent technology and computer vision. The requirements and resulting technologies are discussed using simple reasoning and analysis, leading to a basic design of a software control system, which is based on a hybrid distributed control system