Dienst van SURF
© 2025 SURF
We present a novel hierarchical model for human activity recognition. In contrast with approaches that successively recognize actions and activities, our approach jointly models actions and activities in a unified framework, and their labels are simultaneously predicted. The model is embedded with a latent layer that is able to capture a richer class of contextual information in both state-state and observation-state pairs. Although loops are present in the model, the model has an overall linear-chain structure, where the exact inference is tractable. Therefore, the model is very efficient in both inference and learning. The parameters of the graphical model are learned with a structured support vector machine. A data-driven approach is used to initialize the latent variables; therefore, no manual labeling for the latent states is required. The experimental results from using two benchmark datasets show that our model outperforms the state-of-the-art approach, and our model is computationally more efficient.
The use of machine learning in embedded systems is an interesting topic, especially with the growth in popularity of the Internet of Things (IoT). The capacity of a system, such as a robot, to self-localize, is a fundamental skill for its navigation and decision-making processes. This work focuses on the feasibility of using machine learning in a Raspberry Pi 4 Model B, solving the localization problem using images and fiducial markers (ArUco markers) in the context of the RobotAtFactory 4.0 competition. The approaches were validated using a realistically simulated scenario. Three algorithms were tested, and all were shown to be a good solution for a limited amount of data. Results also show that when the amount of data grows, only Multi-Layer Perception (MLP) is feasible for the embedded application due to the required training time and the resulting size of the model.
Wednesday 17th of January MediaLAB Amsterdam arranged LABFEST, a final expo where we could showcase our protypes and talk to people in the industry about our projects. We got a lot of nice feedback and are happy with the end-product we came up with. Quite a lot of people showed up and we were excited to talk to people about our prototype and the future possibilities of our Virtual Reality Exposure Therapy!
MULTIFILE