Dienst van SURF
© 2025 SURF
This GitHub repository contains the code for a RShiny App for the calculation of center of pressure parameters for individuals performing a balance task. Such data can be obtained from (consumer grade) force plates like the AMTI, Kistler, Bertec or Wii Balance Board.
LINK
We live in a world of glowing rectangles. Our devices emit a bluish light, akin to that from the cerulean sky. Even when they sleep, computers softly pulse tiny LEDs on and off, making their presence known through light. And where they were once uniformly black and dark gray, devices are now white, shiny, and reflective: they add light not just by emitting it, but by reflecting it. The airbrushed aluminium of Macintosh computers has a luminous flux that ranks higher on light meters than pure, snowy white.
MULTIFILE
New approach methodologies predicting human cardiotoxicity are of interest to support or even replace in vivo-based drug safety testing. The present study presents an in vitro–in silico approach to predict the effect of inter-individual and inter-ethnic kinetic variations in the cardiotoxicity of R- and S-methadone in the Caucasian and the Chinese population. In vitro cardiotoxicity data, and metabolic data obtained from two approaches, using either individual human liver microsomes or recombinant cytochrome P450 enzymes (rCYPs), were integrated with physiologically based kinetic (PBK) models and Monte Carlo simulations to predict inter-individual and inter-ethnic variations in methadone-induced cardiotoxicity. Chemical specific adjustment factors were defined and used to derive dose–response curves for the sensitive individuals. Our simulations indicated that Chinese are more sensitive towards methadone-induced cardiotoxicity with Margin of Safety values being generally two-fold lower than those for Caucasians for both methadone enantiomers. Individual PBK models using microsomes and PBK models using rCYPs combined with Monte Carlo simulations predicted similar inter-individual and inter-ethnic variations in methadone-induced cardiotoxicity. The present study illustrates how inter-individual and inter-ethnic variations in cardiotoxicity can be predicted by combining in vitro toxicity and metabolic data, PBK modelling and Monte Carlo simulations. The novel methodology can be used to enhance cardiac safety evaluations and risk assessment of chemicals.
MULTIFILE