IntroductionTo stimulate early recognition and treatment of malnutrition, the Dutch Healthcare Inspectorate obliged all hospitals from 2008–2019 to report the number of malnourished patients with an adequate protein intake on the fourth day of hospital admission. In this article we present results over the past 11 years and discuss success factors and barriers for adequate treatment of malnourished patients in hospitals.MethodsThe annual reports of hospitals on the numbers of patients with a screening result ‘malnourished’ and an adequate protein intake on the fourth day of admission were analysed. Hospitals were categorized based on the percentage of malnourished patients with an adequate protein intake on the fourth day of admission as ‘poor’ (<40% of patients in a hospital achieve an adequate protein intake), ‘moderate’ 40–60% of patients in a hospital achieve an adequate protein intake), and ‘good’ (>60% of patients in a hospital achieve an adequate protein intake). To identify success factors and barriers for adequate treatment and registration of malnourished patients in hospitals, three focus groups were held in June and July 2020. Participants were dietitians and quality employees or nurses who were involved in data collection for malnutrition indicators in their hospitals.ResultsBetween 2008–2019, data were reported of 339,720 malnourished patients. The relative number of patients with adequate intake of protein on the fourth day in hospital ranges from 44%-53% between 2011 and 2019. Before 2013, the number of hospitals that reported data was too small to draw conclusions about results of treatment of malnutrition. Data from 2013 to 2019, show a decline in the number of hospitals with a ‘poor’ score. The number of hospitals with a moderate score increased between 2015 and 2019 and the number of hospitals with a good score remained more or less stable, except for 2018 where more hospitals reached a ‘good’ score. Sixteen professionals from ten different hospitals participated in the focus groups and revealed several determinants of adequate treatment of malnourished patients in hospitals such as awareness, feeling responsible and the need of clear instructions and good collaboration.ConclusionThis inventory of the protein intake of 339,720 hospital malnourished patients over 11 years shows that in one out of five Dutch hospitals >60% of malnourished patients had an adequate protein intake on the fourth day of admission. This shows that meeting protein requirements remains a difficult challenge. Early recognition of malnutrition, optimal multidisciplinary treatment and continuous evaluation is necessary to provide optimal nutritional care in the hospital and beyond.
IntroductionTo stimulate early recognition and treatment of malnutrition, the Dutch Healthcare Inspectorate obliged all hospitals from 2008–2019 to report the number of malnourished patients with an adequate protein intake on the fourth day of hospital admission. In this article we present results over the past 11 years and discuss success factors and barriers for adequate treatment of malnourished patients in hospitals.MethodsThe annual reports of hospitals on the numbers of patients with a screening result ‘malnourished’ and an adequate protein intake on the fourth day of admission were analysed. Hospitals were categorized based on the percentage of malnourished patients with an adequate protein intake on the fourth day of admission as ‘poor’ (<40% of patients in a hospital achieve an adequate protein intake), ‘moderate’ 40–60% of patients in a hospital achieve an adequate protein intake), and ‘good’ (>60% of patients in a hospital achieve an adequate protein intake). To identify success factors and barriers for adequate treatment and registration of malnourished patients in hospitals, three focus groups were held in June and July 2020. Participants were dietitians and quality employees or nurses who were involved in data collection for malnutrition indicators in their hospitals.ResultsBetween 2008–2019, data were reported of 339,720 malnourished patients. The relative number of patients with adequate intake of protein on the fourth day in hospital ranges from 44%-53% between 2011 and 2019. Before 2013, the number of hospitals that reported data was too small to draw conclusions about results of treatment of malnutrition. Data from 2013 to 2019, show a decline in the number of hospitals with a ‘poor’ score. The number of hospitals with a moderate score increased between 2015 and 2019 and the number of hospitals with a good score remained more or less stable, except for 2018 where more hospitals reached a ‘good’ score. Sixteen professionals from ten different hospitals participated in the focus groups and revealed several determinants of adequate treatment of malnourished patients in hospitals such as awareness, feeling responsible and the need of clear instructions and good collaboration.ConclusionThis inventory of the protein intake of 339,720 hospital malnourished patients over 11 years shows that in one out of five Dutch hospitals >60% of malnourished patients had an adequate protein intake on the fourth day of admission. This shows that meeting protein requirements remains a difficult challenge. Early recognition of malnutrition, optimal multidisciplinary treatment and continuous evaluation is necessary to provide optimal nutritional care in the hospital and beyond.
Digitally supported dietary counselling may be helpful in increasing the protein intake in combined exercise and nutritional interventions in community-dwelling older adults. To study the effect of this approach, 212 older adults (72.2 ± 6.3 years) were randomised in three groups: control, exercise, or exercise plus dietary counselling. The dietary counselling during the 6-month intervention was a blended approach of face-to-face contacts and videoconferencing, and it was discontinued for a 6-month follow-up. Dietary protein intake, sources, product groups, resulting amino acid intake, and intake per eating occasion were assessed by a 3-day dietary record. The dietary counselling group was able to increase the protein intake by 32% at 6 months, and the intake remained 16% increased at 12 months. Protein intake mainly consisted of animal protein sources: dairy products, followed by fish and meat. This resulted in significantly more intake of essential amino acids, including leucine. The protein intake was distributed evenly over the day, resulting in more meals that reached the protein and leucine targets. Digitally supported dietary counselling was effective in increasing protein intake both per meal and per day in a lifestyle intervention in community-dwelling older adults. This was predominantly achieved by consuming more animal protein sources, particularly dairy products, and especially during breakfast and lunch.
MULTIFILE
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.