Dienst van SURF
© 2025 SURF
Objective To systematically summarize the literature on the course of pain in patients with knee osteoarthritis (OA), prognostic factors that predict deterioration of pain, the course of physical functioning, and prognostic factors that predict deterioration of physical functioning in persons with knee OA. Methods A search was conducted in PubMed, CINAHL, Embase, Psych‐INFO, and SPORTDiscus up to January 2014. A meta‐analysis and a qualitative data synthesis were performed. Results Of the 58 studies included, 39 were of high quality. High heterogeneity across studies (I2 >90%) and within study populations (reflected by large SDs of change scores) was found. Therefore, the course of pain and physical functioning was interpreted to be indistinct. We found strong evidence for a number of prognostic factors predicting deterioration in pain (e.g., higher knee pain at baseline, bilateral knee symptoms, and depressive symptoms). We also found strong evidence for a number of prognostic factors predicting deterioration in physical functioning (e.g., worsening in radiographic OA, worsening of knee pain, lower knee extension muscle strength, lower walking speed, and higher comorbidity count). Conclusion Because of high heterogeneity across studies and within study populations, no conclusions can be drawn with regard to the course of pain and physical functioning. These findings support current research efforts to define subgroups or phenotypes within knee OA populations. Strong evidence was found for knee characteristics, clinical factors, and psychosocial factors as prognostics of deterioration of pain and physical functioning.
In the literature, illness perceptions have been reported to be important psychological factors associated with pain intensity and physical function in individuals with musculoskeletal pain. The objective of this study was to assess the relationship of illness perceptions with pain intensity and physical function in individuals with noncancer musculoskeletal pain. In this systematic review, relevant literature databases, including PubMed, Embase, PsycINFO, CINAHL, and SPORTDiscus, were searched from inception through December 12, 2017. Two authors (E.D.R. and H.W.) independently performed the search procedures, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the A MeaSurement Tool to Assess systematic Reviews guidelines, and the risk-of-bias assessment, using the QUality In Prognosis Studies tool. A qualitative best-evidence synthesis was performed. A total of 26 articles were included in the review. There were 11 cross-sectional studies concerning associations of illness perceptions with pain intensity and 11 cross-sectional studies of associations of illness perceptions with physical function. For the prognosis of pain intensity by illness perceptions, the authors found 4 longitudinal studies, and for the prognosis of physical function by illness perceptions, the authors found 12 longitudinal studies. All studies except 1 had high risk of bias. Across 15 cross-sectional studies on 9 different musculoskeletal conditions, the researchers found limited to moderate evidence for a consistent direction of the relationship of illness perceptions with pain intensity and physical function. Higher maladaptive illness perceptions imply stronger pain intensity and more limitation in physical function. Evidence in longitudinal studies is lacking, especially on pain.
Objective To develop and internally validate a prognostic model to predict chronic pain after a new episode of acute or subacute non-specific idiopathic, non-traumatic neck pain in patients presenting to physiotherapy primary care, emphasising modifiable biomedical, psychological and social factors. Design A prospective cohort study with a 6-month follow-up between January 2020 and March 2023. Setting 30 physiotherapy primary care practices. Participants Patients with a new presentation of non-specific idiopathic, non-traumatic neck pain, with a duration lasting no longer than 12 weeks from onset. Baseline measures Candidate prognostic variables collected from participants included age and sex, neck pain symptoms, work-related factors, general factors, psychological and behavioural factors and the remaining factors: therapeutic relation and healthcare provider attitude. Outcome measures Pain intensity at 6 weeks, 3 months and 6 months on a Numeric Pain Rating Scale (NPRS) after inclusion. An NPRS score of ≥3 at each time point was used to define chronic neck pain. Results 62 (10%) of the 603 participants developed chronic neck pain. The prognostic factors in the final model were sex, pain intensity, reported pain in different body regions, headache since and before the neck pain, posture during work, employment status, illness beliefs about pain identity and recovery, treatment beliefs, distress and self-efficacy. The model demonstrated an optimism-corrected area under the curve of 0.83 and a corrected R2 of 0.24. Calibration was deemed acceptable to good, as indicated by the calibration curve. The Hosmer–Lemeshow test yielded a p-value of 0.7167, indicating a good model fit. Conclusion This model has the potential to obtain a valid prognosis for developing chronic pain after a new episode of acute and subacute non-specific idiopathic, non-traumatic neck pain. It includes mostly potentially modifiable factors for physiotherapy practice. External validation of this model is recommended.
LINK
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.