Dienst van SURF
© 2025 SURF
Marine spatial planning (MSP) was developed as a place-based, integrated marine governance approach to address sectoral and fragmented management issues and has seen significant evolvement over the past two decades. MSP has rapidly become the most commonly endorsed management regime for sustainable development in the marine environment, with initiatives being implemented across multiple regions of the globe. Despite its broad and growing acceptance and use, there are several key challenges that remain, both conceptual and practical, that are negatively impacting the realization of MSP’s potential. These include institutional shortcomings, the exclusion of stakeholders, a failure to account for the human and social dimensions of marine regions, the marginalization of different types of knowledge, and the growing need to adapt to global environmental change. Although studies have examined the emergence of MSP in different geographical and institutional contexts, there is a lack of comparative analysis of how initiatives are progressing and if the foundational aims of MSP are being achieved. There is a need to analyze the degree to which MSP initiatives are responding to the environmental challenges that they have been set up to tackle and, as marine plans are setting out long-term visions for marine management, to understand if current initiatives are fit for purpose. This article responds to these concerns and reviews the evolution of MSP within 12 regional ocean areas. We utilize the term regional ocean areas to illustrate the geographical spread of MSP, with examinations conducted of the approach to MSP that specific nations within each of the 12 chosen clusters have followed. By critically assessing how MSP is progressing, it is possible to shed light on the opportunities and challenges that are facing current initiatives. This can help to reveal learning lessons that can inform future MSP systems and guide initiatives along more sustainable pathways.
MULTIFILE
Within the context of the Iliad project, the authors present technical challenges and the first results of having valid 3D scenes of (non-)existing offshore wind farms procedurally and automatically generated within either the Unreal or Unity game engine. The Iliad – Digital Twins of the Ocean project (EU Horizon 2020) aims to develop a ‘system of systems’ for creating cutting-edge digital twins of specific sea and ocean areas for diverse purposes related to their sustainable use and protection. One of the Iliad pilots addresses the topic of offshore floating wind farm construction or maintenance scenario testing and validation using the Unity 3D game engine. This work will speed up the development of these scenarios by procedurally and automatically creating the Unity 3D scene rather than manually (which is done at present). The main technical challenges concern the data-driven approach, in which a JSON configuration file drives the scene creation. The first results show a base wind farm running in Unreal 5.1. The final product will be able to handle environmental conditions, biological conditions, and specific human activities as input parameters.
The Hereon team has expressed interest in the use of the PO platform for the virtualization of the (hydro)dynamic behavior of offshore wind farms, in particular regarding turbidity around wind turbines. BUas has developed the Procedural Ocean (PO) platform. The platform uses procedural content generation (AI) for data-driven 3D virtualization of complex marine and maritime environments, with elements such as geo-environment (bathymery, etc.), geo-physics (weather conditions, waves), wind farms, aquaculture, shipping, ecology, and more. The virtual and immersive environment in the game engine Unreal supports advanced (game-like) user interaction for policy-oriented learning (marine spatial planning), ocean management, and decision making. We therefore propose a joint pilot Research and Development (R&D) project to explore, demonstrate and validate how a gridded dataset provided by Hereon can show the dynmics around wind farm monopiles. Furthermore, we can explore interactivity with the engineering and design of the turbine and the multiplication of the turbine design to compose a wind farm. Client: Hereon (The Helmholtz-Zentrum Hereon is a non-profit making research institute )