Dienst van SURF
© 2025 SURF
© 2025 SURF
This Article presents the PSO matrix as a tool for making choices in change projects – choices for simplicity or for complexity. A good process structure is essential for a simple organization, but it is the employees and the managers who are expected to take the lead in the changes and the improvement proposals. The PSO matrix is a useful and usable instrument that promotes simplicity and respects the intelligence that is already present in the organization, particularly that of the ordinary employees. The approach leads to drastic savings. Do as much nothing as possible.
MULTIFILE
This Article presents the PSO matrix as a tool for making choices in change projects – choices for simplicity or for complexity. A good process structure is essential for a simple organization, but it is the employees and the managers who are expected to take the lead in the changes and the improvement proposals. The PSO matrix is a useful and usable instrument that promotes simplicity and respects the intelligence that is already present in the organization, particularly that of the ordinary employees. The approach leads to drastic savings. Do as much nothing as possible.
In elke organisatie zijn er krachten en invloeden werkzaam, waardoor de organisatie neigt naar aannemen van grote en complexe projecten. Door bewust te kiezen voor eenvoud is veel geld te besparen. Do as much nothing as possible, stelt Dick Markvoort.
MULTIFILE
Psoriasis (Pso) is a chronic inflammatory skin disease, and up to 30% of Pso patients develop psoriatic arthritis (PsA), which can lead to irreversible joint damage. Early detection of PsA in Pso patients is crucial for timely treatment but difficult for dermatologists to implement. We, therefore, aimed to find disease-specific immune profiles, discriminating Pso from PsA patients, possibly facilitating the correct identification of Pso patients in need of referral to a rheumatology clinic. The phenotypes of peripheral blood immune cells of consecutive Pso and PsA patients were analyzed, and disease-specific immune profiles were identified via a machine learning approach. This approach resulted in a random forest classification model capable of distinguishing PsA from Pso (mean AUC = 0.95). Key PsA-classifying cell subsets selected included increased proportions ofdifferentiated CD4+CD196+CD183-CD194+ and CD4+CD196-CD183-CD194+ T-cells and reduced proportions of CD196+ and CD197+ monocytes, memory CD4+ and CD8+ T-cell subsets and CD4+ regulatory T-cells. Within PsA, joint scores showed an association with memory CD8+CD45RACD197- effector T-cells and CD197+ monocytes. To conclude, through the integration of in-depth flow cytometry and machine learning, we identified an immune cell profile discriminating PsA from Pso. This immune profile may aid in timely diagnosing PsA in Pso.
MULTIFILE
In hoeverre en op welke wijze brengen impactondernemers hun impact in kaart? Welke instrumenten voor impactmeting worden in Nederland daadwerkelijk gebruikt? En welke behoeften leven er voor doorontwikkeling van dit instrumentarium? Deze vragen stonden centraal in dit onderzoek in opdracht van de City Deal Impact Ondernemen ten behoeve van impactondernemers. Het onderzoek bestond uit verschillende stappen. Allereerst is een groslijst gemaakt van instrumenten voor impactmeting zoals die uit de literatuur bekend zijn. Daarin is uiteengezet waarin de instrumenten zich van elkaar onderscheiden, zoals toepassingsgebied, reikwijdte en sector. Ook is het verschil toegelicht tussen registratie, waarmee een ondernemer kan aantonen dat en in welke mate hij een impactondernemer is; en impactmeting, waarmee een ondernemer kan laten zien welke impact hij met zijn activiteiten maakt.Vervolgens is op basis van het vooronderzoek een enquête opgesteld waarmee het daadwerkelijk gebruik van de instrumenten is onderzocht, plus de behoeften van impactondernemers ten aanzien van instrumentarium voor impactmeting. Ondanks intensieve aandacht voor de verspreiding van de enquête hebben slechts 65 ondernemers de lijst ingevuld. Aanvullend zijn verdiepende interviewsgehouden met in totaal zeven impactondernemers. De resultaten laten zien dat er al door veel ondernemers aan impactmeting gedaan wordt, met een keur aan instrumenten. De meest genoemde reden voor het meten van impact is ‘interne sturing’. Externe partijen vragen nog niet vaak naar een impactrapportage. Er is geen standaardmethode voor impactmeting en er is weinig uniformiteit in gebruikte indicatoren of criteria. Verder valt op dat instrumenten voor impactmeting en duurzaamheidsrapportages zoals die in de toekomst vanbedrijven gevraagd worden op basis van aangescherpte Europese regelgeving, nog nauwelijks op elkaar zijn afgestemd.Het onderzoek leidt tot zeven aanbevelingen aan de City Deal Impact Ondernemen:1. Benadruk dat certificeren en impact meten verschillende zaken zijn2. Investeer in eenvoudige en goedkope instrumenten3. Streef naar meer uniformiteit4. Verbind generiek en specifiek5. Stimuleer dat impactmeting beloond wordt6. Help financiers bij uniformering rond impactmeting7. Aan de slag met impactrapportages!Bovendien is als praktisch hulpmiddel een flyer opgesteld voor ondernemers (zie bijlage 2), dat een compact overzicht biedt van de in Nederland veel gebruikte instrumenten. Met deze flyer kan een ondernemer snel kiezen welk instrument hij kan gebruiken voor het doel dat hij ermee beoogt.
LINK
Wie aan de slag wil als sociaal ondernemer of meer wil weten over sociaal ondernemerschap, vindt in Sociaal ondernemerschap: impact eerst een uitgebreide gids vol inzichten en praktische adviezen. Het boek bestaat uit drie delen. Het eerste deel, ‘Impact eerst’, laat zien hoe sociaal ondernemerschap past binnen nieuw economisch denken en hoe het zich verhoudt tot andere concepten, zoals maatschappelijk verantwoord of duurzaam ondernemen. Heldere voorbeelden en gedetailleerde analyses tonen hoe sociale ondernemingen maatschappelijke problemen aanpakken. Tevens gaat het in op het begrip impact: wat betekent dit nu precies en hoe kun je impact creëren en meten?Het tweede deel, ‘Sociaal ondernemen in de praktijk’, biedt praktische richtlijnen voor het starten en organiseren van een sociale onderneming. Het bespreekt kenmerken en vaardigheden van sociaal ondernemers, het opzetten en organiseren van een sociale onderneming en het functioneren van het ecosysteem rond sociaal ondernemerschap.In het derde deel, ‘De toekomst van sociaal ondernemerschap’, staan tien kansen voor de toekomst centraal. Hierin geeft de auteur aan hoe je als sociaal ondernemer kunt bijdragen aan beter onderwijs, sociale inclusie en duurzaamheid. Het boek wordt gecompleteerd met een lijst met tips voor verder lezen, kijken en luisteren.Sociaal ondernemerschap: impact eerst is een waardevolle bron voor ondernemers, beleidsmakers, studenten en iedereen die geïnteresseerd is in ondernemen met een maatschappelijke missie. Het boek presenteert de inzichten en tools om positieve verandering te realiseren door middel van sociaal ondernemerschap.
MULTIFILE
Praktische aanbevelingen op basis van bevindingen uit systematisch literatuuronderzoek bij de Covid-19 en vergelijkbare virusuitbraken en interviews met experts en ervaringsdeskundigen.
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.