Dienst van SURF
© 2025 SURF
Growth conditions have been frequently studied in optimizing polyhydroxybutyrate (PHB) production, while few studies were performed to unravel the dynamic mixed microbial consortia (MMCs) in the process. In this study, the relationship between growth conditions (C/N ratios and pH) and the corresponding key-microbes were identified and monitored during PHB accumulation. The highest PHB level (70 wt% of dry cell mass) was obtained at pH 9, C/N 40, and acetic acid 10 g/L. Linking the dominant genera with the highest point of PHB accumulation, Thauera was the most prevalent species in all MMCs of pH 9, except when a C/N ratio of 1 was applied. Notably, dominant bacteria shifted at pH 7 (C/N 10) from Thauera (0 h) to Paracoccus, and subsequently to Alcaligenes following the process of PHB accumulation and consumption. Further understanding of the relationship between the structure of the microbial community and the performance will be beneficial for regulating and obtaining high PHB accumulation within an MMC. Our study illustrates the impact of C/N ratios and pH on microbial prevalence and PHB production levels using a mixed microbial starter culture. This knowledge will broaden industrial perspectives for regulating high PHB production and timely harvesting.
LINK
The transition to a biobased economy necessitates utilizing renewable resources as a sustainable alternative to traditional fossil fuels. Bioconversion is a way to produce many green chemicals from renewables, e.g., biopolymers like PHAs. However, fermentation and bioconversion processes mostly rely on expensive, and highly refined pure substrates. The utilization of crude fractions from biorefineries, especially herbaceous lignocellulosic feedstocks, could significantly reduce costs. This presentation shows the microbial production of PHA from such a crude stream by a wild-type thermophilic bacterium Schlegelella thermodepolymerans [1]. Specifically, it uses crude xylose-rich fractions derived from a newly developed biorefinery process for grassy biomasses (the ALACEN process). This new stepwise mild flow-through biorefinery approach for grassy lignocellulosic biomass allows the production of various fractions: a fraction containing esterified aromatics, a monomeric xylose-rich stream, a glucose fraction, and a native-like lignin residue [2]. The crude xylose-rich fraction was free of fermentation-inhibiting compounds meaning that the bacterium S.thermodepolymerans could effectively use it for the production of one type of PHA, polyhydroxybutyrate. Almost 90% of the xylose in the refined wheat straw fraction was metabolized with simultaneous production of PHA, matching 90% of the PHA production per gram of sugars, comparable to PHA yields from commercially available xylose. In addition to xylose, S. thermodepolymerans converted oligosaccharides with a xylose backbone (xylans) into fermentable xylose, and subsequently utilized the xylose as a source for PHA production. Since the xylose-rich hydrolysates from the ALACEN process also contain some oligomeric xylose and minor hemicellulose-derived sugars, optimal valorization of the C5-fractions derived from the refinery process can be obtained using S. thermodepolymerans. This opens the way for further exploration of PHA production from C5-fractions out of a variety of herbaceous lignocellulosic biomasses using the ALACEN process combined with S. thermodepolymerans. Overall, the innovative utilization of renewable resources in fermentation technology, as shown herein, makes a solid contribution to the transition to a biobased economy.[1] W. Zhou, D.I. Colpa, H. Permentier, R.A. Offringa, L. Rohrbach, G.J.W. Euverink, J. Krooneman. Insight into polyhydroxyalkanoate (PHA) production from xylose and extracellular PHA degradation by a thermophilic Schlegelella thermodepolymerans. Resources, Conservation and Recycling 194 (2023) 107006, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2023.107006. [2] S. Bertran-Llorens, W.Zhou. M.A.Palazzo, D.I.Colpa, G.J.W.Euverink, J.Krooneman, P.J.Deuss. ALACEN: a holistic herbaceous biomass fractionation process attaining a xylose-rich stream for direct microbial conversion to bioplastics. Submitted 2023.
LINK
“Duurzaamheid”, het is één van de termen die tegenwoordig niet meer weg te denken zijn uit het nieuws, de reclames en vele netwerkbijeenkomsten. Duurzaam ondernemen, duurzaam wonen, duurzame energievoorziening, duurzame producten, gaat er een dag aan ons voorbij dat we niet worden herinnerd aan het belang van een duurzame levensstijl om er voor te zorgen dat deze wereld ook voor onze kinderen en achterkleinkinderen nog een fijne natuurlijke wereld mag zijn om in te leven? Op het gebied van duurzame materialen kregen zo biopolymeren en gerecyclede kunststoffen de aandacht. In dit boekje worden biopolymeren belicht. Daarbij wordt vooral ook aandacht besteed aan de discussie of biopolymeren nou wel echt zo milieuvriendelijk en duurzaam zijn als dat ze lijken. Dit boekje is opgesteld om ontwerpers en bedrijven die zich bezig houden met productontwikkeling praktische (eerste) informatie te bieden over biopolymeren. Naast definities, voor- en nadelen, technieken, toepassingsgebieden, soorten, eigenschappen en regelgeving zal ook een roadmap gegeven worden die inzicht geeft in welke biopolymeren er al zijn en welke er nog verwacht kunnen worden.
MULTIFILE
Verduurzaming van de chemische en landbouwsector is essentieel om klimaat- en circulaire doelstellingen te halen. Eén van de mogelijkheden om de chemische sector te vergroenen is om hernieuwbare grondstoffen als ‘feedstock’ voor productie te gebruiken. Biopolymeren die gemaakt worden uit hernieuwbare grondstoffen zijn een interessant groen alternatief voor fossiele plastics. Een veelbelovende groep ‘biobased plastics’ zijn polyhydroxyalkanoaten (PHA). PHAs worden door micro-organismen geproduceerd en kunnen verschillende samenstellingen hebben die de eigenschappen van dit materiaal beïnvloeden. Hierdoor zijn PHA's, blends van PHA en andere biobased materialen voor vele toepassingen geschikt te maken en derhalve een serieuze uitdager van fossiele plastics. Zodra deze biobased producten aan het einde van hun gebruikersfase komen, of als single-use materiaal in bijvoorbeeld de agrarische sector worden toegepast, is het belangrijk naast de mogelijkheden voor hergebruik en recycling inzicht te hebben in de snelheid en volledigheid van de biologische afbraak. In het voorgestelde KIEM-onderzoek wordt biologische afbraak middels industriële en kleinschalige compostering en in natuurlijke milieus bepaald. Onder verschillende omstandigheden, zoals in mariene, estuariene en zoetwatermilieus, en in verschillende bodemtypen zoals zand, klei en veenbodems wordt vastgesteld of effectieve afbraak plaatsvindt. Afbraak tot bouwstenen voor nieuwe polymeren of volledige mineralisatie, de snelheid daarvan en of mogelijk sprake is van vorming van microplastics wordt onderzocht. Stimuleren van biologische afbraak door bio-augmentatie wordt eveneens onderzocht. Een succesvol project draagt bij aan het verbeteren van de business case van zowel producenten van biobased polymeren (Paques Biomaterials) als van de maakindustrie die producten maken van deze groene ‘plastics’ (Maan Biobased Products; Happy Cups). Het projectresultaat geeft aanwijzingen over de impact die het onvermijdelijke PHA--zwerfafval zal hebben op het milieu en hoe deze impact zich verhoudt tot die van fossiel-gebaseerd zwerfplastic. Daarnaast vormt dit project ook de basis voor een nieuwe business case voor gecontroleerde end-of-life verwerkingsmethodieken.
It is known that several bacteria in sewage treatment plants can produce attractive quantities of biodegradable polymers within their cell walls (up to 80% of the cell weight). These polymers may consist of polyhydroxyalkanoates (PHA), a bioplastic which exhibits interesting characteristics like excellent biodegradation, low melting point and good environmental footprint. PHA bioplastics or PHBV are still quite expensive because cumbersome downstream processing steps of the PHAcontaining bacteria are needed before PHA can be applied in products. In this proposal, the consortium investigates the possibilities for eliminating these expensive and environmentally intensive purification steps, and as a result contribute to speeding up the up-take of PHA production of residual streams by the market. The objective of the project is to investigate the possibilities of direct extrusion of PHAcontaining bacteria and the application opportunities of the extruded PHA. The consortium of experienced partners (Paques Biomaterials, MAAN Group, Ecoras and CoEBBE) will investigate and test the extrusion of different types of PHA-containing biomass, and analyse the products on composition, appearance and mechanical properties. Moreover, the direct extrusion process will be evaluated and compared with conventional PHA extraction and subsequent extrusion. The expected result will be a proof of principle and provide an operational window for the application of direct extrusion with PHA-containing biomass produced using waste streams, either used as such or in blends with purified PHA. Both the opportunities of the direct extrusion process itself as well as the application opportunities of the extruded PHA will be mapped. If the new process leads to a cheaper, more environmentally friendly produced and applicable PHA, the proof of principle developed by the consortium could be the first step in a larger scale development that could help speeding up the implementation of the technology for PHA production from residual streams in the market.
Waarde creëren uit afval door methaan om te zetten in duurzame plastic alternatieven Methaan is een krachtig broeikasgas dat aanzienlijk bijdraagt aan de opwarming van de aarde. Nationale en internationale overeenkomsten vragen een aanzienlijke reductie van broeikasgassen in 2030 (49% t.o.v 1990). In Europa is meer dan 60% van de methaanemissies afkomstig van landbouw (40%) en (organisch) afval (20%) (1). Een deel van het geproduceerde methaan kan worden hergebruikt door het om te zetten in warmte en elektriciteit. Een groot deel van deze methaan houdende uitstoot kan echter niet worden gebruikt, vanwege te lage methaanconcentraties en/ of onvoldoende hoeveelheden. Dit is het geval voor bronnen, zoals stortplaatsen en kleine vergisters. Hier wordt methaan uiteindelijk afgefakkeld of uitgestoten naar de atmosfeer, terwijl het een groot potentieel heeft om te worden omgezet in biobased materialen, zoals bioplastics. Dit project zal onderzoeken of methaan bronnen die nu (deels) onbenut worden, gebruikt kunnen worden voor de productie van waardevolle materialen. Hierbij focussen we op biogassen uit stortplaatsen en vergisters waaruit het bioplastic PHB geproduceerd kan worden. Er is een potentie van 158.000 ton PHB per jaar, alleen al in Nederland. M2M heeft twee hoofddoelen: 1. Om methaan houdend biogas te recyclen tot duurzame plastic alternatieven. Methaan kan met behulp van micro-organismen biologisch omgezet worden in het biopolymeer polyhydroxybutyraat (PHB). Dit zal eerst op laboratorium schaal uitgetest worden en waarna een biofilter installatie zal worden ontworpen. 2. Het bestuderen van de haalbaarheid om methaan uit biogas te gebruiken voor PHB-productie met een methaan-bron die hiervoor nog niet eerder is onderzocht. Aangezien PHB een biologisch afbreekbaar polymeer is, draagt dit project bij aan vermindering van wereldwijde plasticvervuiling. Potentiële hernieuwbare koolstofbronnen, die kunnen worden gebruikt voor de productie van biopolymeer, leveren een bijdrage aan een circulair 'waste to value'-systeem.