Dienst van SURF
© 2025 SURF
An important contribution to the environmental impact of agro-food supply chains is related to the agricultural technology and practices used in the fields during raw material production. This problem can be framed from the point of view of the Focal Company (FC) as a raw material Green Supplier Selection Problem (GSSP). This paper describes an extension of the GSSP methodology that integrates life cycle assessment, environmental collaborations, and contract farming in order to gain social and environmental benefits. In this approach, risk and gains are shared by both parties, as well as information related to agricultural practices through which the FC can optimize global performance by deciding which suppliers to contract, capacity and which practices to use at each supplying field in order to optimize economic performance and environmental impact. The FC provides the knowledge and technology needed by the supplier to reach these objectives via a contract farming scheme. A case study is developed in order to illustrate and a step-by-step methodology is described. A multi-objective optimization strategy based on Genetic Algorithms linked to a MCDM approach to the solution selection step is proposed. Scenarios of optimization of the selection process are studied to demonstrate the potential improvement gains in performance.
The constant growth of air traffic, especially in Europe, is putting pressure on airports, which, in turn, are suffering congestion problems. The airspace surrounding airport, terminal manoeuvring area (TMA), is particularly congested, since it accommodates all the converging traffic to and from airports. Besides airspace, airport ground capacity is also facing congestion problems, as the inefficiencies coming from airspace operations are transferred to airport ground and vice versa. The main consequences of congestion at airport airspace and ground, is given by the amount of delay generated, which is, in turn, transferred to other airports within the network. Congestion problems affect also the workload of air traffic controllers that need to handle this big amount of traffic.This thesis deals with the optimization of the integrated airport operations, considering the airport from a holistic point of view, by including operations such as airspace and ground together. Unlike other studies in this field of research, this thesis contributes by supporting the decisions of air traffic controllers regarding aircraft sequencing and by mitigating congestion on the airport ground area. The airport ground operations and airspace operations can be tackled with two different levels of abstractions, macroscopic or microscopic, based on the time-frame for decision-making purposes. In this thesis, the airport operations are modeled at a macroscopic level.The problem is formulated as an optimization model by identifying an objective function that considers the amount of conflicts in the airspace and capacity overload on the airport ground; constraints given by regulations on separation minima between consecutive aircraft in the airspace and on the runway; decision variables related to aircraft entry time and entry speed in the airspace, landing runway and departing runway choice and pushback time. The optimization model is solved by implementing a sliding window approach and an adapted version of the metaheuristic simulated annealing. Uncertainty is included in the operations by developing a simulation model and by including stochastic variables that represent the most significant sources of uncertainty when considering operations at a macroscopic level, such as deviation from the entry time in the airspace, deviation in the average taxi time and deviation in the pushback time. In this thesis, optimization and simulation techniques are combined together by developing two methods that aim at improving the solution robustness and feasibility. The first method acts as a validation tool for the optimized solution, and it improves the robustness of solution by iteratively fine-tuning some of the optimization model input parameters. The second method embeds the optimization in a simulation environment by taking full advantage of the sliding window approach and creating a loop for a continuous improvement of the optimized solution at each window of the sliding window approach. Both methods prove to be effective by improving the performance, lowering the total amount of conflicts up to 23.33% for the first method and up to 11.2% for the second method, however, in contrast to the deterministic method, the two methods they are not able to achieve a conflict-free scenario due to the effect of uncertainty.In general, the research conducted in this thesis highlights that uncertainty is a factor that affects to a large extent the feasibility of optimized solution when applied to real-world instances, and it, moreover, confirms that using simulation together with optimization has the potentiality toivdeal with uncertainty. The framework developed can be potentially applied to similar problems and different optimization solving methods can be adapted to it.Keywords: Optimization, Simulation, Integrated airport operations, Uncertainty
MULTIFILE
For long flights, the cruise is the longest phase and where the largest amount of fuel is consumed. An in-cruise optimization method has been implemented to calculate the optimal trajectory that reduces the flight cost. A three-dimensional grid has been created, coupling lateral navigation and vertical navigation profiles. With a dynamic analysis of the wind, the aircraft can perform a horizontal deviation or change altitudes via step climbs to reduce fuel consumption. As the number of waypoints and possible step climbs is increased, the number of flight trajectories increases exponentially; thus, a genetic algorithm has been implemented to reduce the total number of calculated trajectories compared to an exhaustive search. The aircraft’s model has been obtained from a performance database, which is currently used in the commercial flight management system studied in this paper. A 5% average flight cost reduction has been obtained.
MULTIFILE
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.
The main challenge addressed in FTMAAS (Freight Traffic Management As A Service) is the integration of logistics and traffic management information. Digitalization is progressing quickly in both areas, but operational connections and synergies are scarce. The mission of the FTMAAS Living Lab is to connect these two subsystems by developing, implementing and testing integrating software applications that benefit both worlds. The Living Lab focuses on the International Freight Corridor South (Rotterdam-Venlo) and manages 3 main running cases and 6 research subprojects. Research focuses on questions of value creation, analytics and optimization of both logistics and network level traffic management.
The main challenge addressed in FTMAAS (Freight Traffic Management As A Service) is the integration of logistics and traffic management information. Digitalization is progressing quickly in both areas, but operational connections and synergies are scarce. The mission of the FTMAAS Living Lab is to connect these two subsystems by developing, implementing and testing integrating software applications that benefit both worlds. The Living Lab focuses on the International Freight Corridor South (Rotterdam-Venlo) and manages 3 main running cases and 6 research subprojects. Research focuses on questions of value creation, analytics and optimization of both logistics and network level traffic management.