Introduction: Few data described practicalities of using mechanical insufflation-exsufflation (MI-E) for invasively ventilated ICU patients and evidence for benefit of their use is lacking.Aim and objective: To identify barriers and facilitators to use MI-E devices in invasively ventilated ICU patients, and to explore reasons for their use in various patient indications.Methods: Four focus group discussions; 3 national (Netherlands) and 1 with international representation, each with a purposeful interprofessional sample of a maximum 10 participants with experience in using MI-E in invasively ventilated ICU patients. We developed a semi-structured interview guide informed by the Theoretical Domain Framework. An observer was present in each session. Sessions were audio recorded and transcribed verbatim. Data were analysed using content analysis.Results: Barriers for MI-E use were lack of evidence and lack of expertise in MI-E, as well as lack of device availability within the ICU. Facilitators were experience with MI-E and perceived clinical improvement in patients with MI-E use. Common reasons to start using MI-E were difficult weaning, recurrent atelectasis and pneumonia. Main contraindications were, bullous emphysema, ARDS, high PEEP, hemodynamic instability, recent pneumothorax. There was substantial variability on used technical settings of MI-E in invasively ventilated patients.Conclusions: Key barriers and facilitators to MI-E were lack of evidence, available expertise and perceived clinical improvement. Variability on technical settings likely reflect lack of evidence. Future studies should focus on settings, safety and feasibility of MI-E in invasively ventilated patients before studies on effect can be conducted.
LINK
Introduction: Few data described practicalities of using mechanical insufflation-exsufflation (MI-E) for invasively ventilated ICU patients and evidence for benefit of their use is lacking.Aim and objective: To identify barriers and facilitators to use MI-E devices in invasively ventilated ICU patients, and to explore reasons for their use in various patient indications.Methods: Four focus group discussions; 3 national (Netherlands) and 1 with international representation, each with a purposeful interprofessional sample of a maximum 10 participants with experience in using MI-E in invasively ventilated ICU patients. We developed a semi-structured interview guide informed by the Theoretical Domain Framework. An observer was present in each session. Sessions were audio recorded and transcribed verbatim. Data were analysed using content analysis.Results: Barriers for MI-E use were lack of evidence and lack of expertise in MI-E, as well as lack of device availability within the ICU. Facilitators were experience with MI-E and perceived clinical improvement in patients with MI-E use. Common reasons to start using MI-E were difficult weaning, recurrent atelectasis and pneumonia. Main contraindications were, bullous emphysema, ARDS, high PEEP, hemodynamic instability, recent pneumothorax. There was substantial variability on used technical settings of MI-E in invasively ventilated patients.Conclusions: Key barriers and facilitators to MI-E were lack of evidence, available expertise and perceived clinical improvement. Variability on technical settings likely reflect lack of evidence. Future studies should focus on settings, safety and feasibility of MI-E in invasively ventilated patients before studies on effect can be conducted.
LINK
BACKGROUND: The SpO2/FiO2 is a useful oxygenation parameter with prognostic capacity in patients with ARDS. We investigated the prognostic capacity of SpO2/FiO2 for mortality in patients with ARDS due to COVID-19.METHODS: This was a post-hoc analysis of a national multicenter cohort study in invasively ventilated patients with ARDS due to COVID-19. The primary endpoint was 28-day mortality.RESULTS: In 869 invasively ventilated patients, 28-day mortality was 30.1%. The SpO2/FiO2 on day 1 had no prognostic value. The SpO2/FiO2 on day 2 and day 3 had prognostic capacity for death, with the best cut-offs being 179 and 199, respectively. Both SpO2/FiO2 on day 2 (OR, 0.66 [95%-CI 0.46-0.96]) and on day 3 (OR, 0.70 [95%-CI 0.51-0.96]) were associated with 28-day mortality in a model corrected for age, pH, lactate levels and kidney dysfunction (AUROC 0.78 [0.76-0.79]). The measured PaO2/FiO2 and the PaO2/FiO2 calculated from SpO2/FiO2 were strongly correlated (Spearman's r = 0.79).CONCLUSIONS: In this cohort of patients with ARDS due to COVID-19, the SpO2/FiO2 on day 2 and day 3 are independently associated with and have prognostic capacity for 28-day mortality. The SpO2/FiO2 is a useful metric for risk stratification in invasively ventilated COVID-19 patients.
MULTIFILE