Dienst van SURF
© 2025 SURF
BackgroundGait analysis has been used for decades to quantify knee function in patients with knee osteoarthritis; however, it is unknown whether and to what extent inter-laboratory differences affect the comparison of gait data between studies. Therefore, the aim of this study was to perform an inter-laboratory comparison of knee biomechanics and muscle activation patterns during gait of patients with knee osteoarthritis.MethodsKnee biomechanics and muscle activation patterns from patients with knee osteoarthritis were analyzed, previously collected at Dalhousie University (DAL: n = 55) and Amsterdam UMC, VU medical center (VUmc: n = 39), using their in-house protocols. Additionally, one healthy male was measured at both locations. Both direct comparisons and after harmonization of components of the protocols were made. Inter-laboratory comparisons were quantified using statistical parametric mapping analysis and discrete gait parameters.ResultsThe inter-laboratory comparison showed offsets in the sagittal plane angles, moments and frontal plane angles, and phase shifts in the muscle activation patterns. Filter characteristics, initial contact identification and thigh anatomical frame definitions were harmonized between the laboratories. After this first step in protocol harmonization, the offsets in knee angles and sagittal plane moments remained, but the inter-laboratory comparison of the muscle activation patterns improved.ConclusionsInter-laboratory differences obstruct valid comparisons of gait datasets from patients with knee osteoarthritis between gait laboratories. A first step in harmonization of gait analysis protocols improved the inter-laboratory comparison. Further protocol harmonization is recommended to enable valid comparisons between labs, data-sharing and multicenter trials to investigate knee function in patients with knee osteoarthritis.
MULTIFILE
PURPOSE: To compare the responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects.SCOPE: Nine healthy participants were subjected to perturbed walking on a split-belt treadmill. Four perturbation types were applied, each at five intensities. The activations of seven muscles surrounding the knee were measured using surface EMG. The responses in muscle activation were expressed by calculating mean, peak, co-contraction (CCI) and perturbation responses (PR) values. PR captures the responses relative to unperturbed gait. Statistical parametric mapping analysis was used to compare the muscle activation patterns between conditions.RESULTS: Perturbations evoked only small responses in muscle activation, though higher perturbation intensities yielded a higher mean activation in five muscles, as well as higher PR. Different types of perturbation led to different responses in the rectus femoris, medial gastrocnemius and lateral gastrocnemius. The participants had lower CCI just before perturbation compared to the same phase of unperturbed gait.CONCLUSIONS: Healthy participants respond to different perturbations during gait with small adaptations in their knee joint muscle activation patterns. This study provides insights in how the muscles are activated to stabilize the knee when challenged. Furthermore it could guide future studies in determining aberrant muscle activation in patients with knee disorders.
Swallowing muscle strength exercises are effective in restoring swallowing function. In order to perform the exercises with progressive load, the swallow exercise aid (SEA) was developed. Precise knowledge on which muscles are activated with swallowing exercises, especially with the SEA, is lacking. This knowledge would aid in optimizing the training program to target the relevant swallowing muscles, if necessary. Three healthy volunteers performed the three SEA exercises (chin tuck against resistance, jaw opening against resistance and effortful swallow) and three conventional exercises [conventional effortful swallow (cES), Shaker and Masako] in supine position inside an MRI scanner. Fast muscle functional MRI scans (generating quantitative T2-maps) were made immediately before and after the exercises. Median T2 values at rest and after exercise were compared to identify activated muscles. After the three SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles showed significant T2 value increase. After the Shaker, the lateral pterygoid muscles did not show such an increase, but the three other muscle groups did. The cES and Masako caused no significant increase in any of these muscle groups. During conventional (Shaker) exercises, the suprahyoid, infrahyoid, and sternocleidomastoid muscles are activated. During the SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles are activated. The findings of this explorative study further support the potential of the SEA to improve swallowing rehabilitation.