Dienst van SURF
© 2025 SURF
Het doel van dit onderzoek is te onderzoeken onder welke omstandigheden en onder welke condities relatief moderne modelleringstechnieken zoals support vector machines, neural networks en random forests voordelen zouden kunnen hebben in medisch-wetenschappelijk onderzoek en in de medische praktijk in vergelijking met meer traditionele modelleringstechnieken, zoals lineaire regressie, logistische regressie en Cox regressie.
MULTIFILE
Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.
The composition of diets and supplements given to bovine cattle are constantly evolving. These changes are driven by the social call for a more sustainable beef and dairy production, interests to influence the nutritional value of bovine products for human consumption, and to increase animal health. These adaptations can introduce (new) compounds in the beef and milk supply chain. Currently, the golden standard to study transfer of compounds from feed or veterinary medicine to cows and consequences for human health is performing animal studies, which are time consuming, costly and thus limited. Although animal studies are increasingly debated for ethical reasons, cows are still in the top 10 list of most used animals for animal experiments in Europe. There is, however, no widely applicable alternative modelling tool available to rapidly predict transfer of compounds, apart from individual components like cattle kinetic models and simple in vitro kinetic assays. Therefore, this project aims to develop a first-of-a-kind generic bovine kinetic modelling platform that predicts the transfer of compounds from medicine/supplements and feed to bovine tissues. This will provide new tools for the efficacy and safety evaluation of veterinary medicine and feed and facilitates a rapid evaluation of human health effects of bovine origin food products, thereby contributing to an increased safety in the cattle production chain and supporting product innovations, all without animal testing. This will be accomplished by integrating existing in silico and in vitro techniques into a generic bovine modelling platform and further developing state-of-the-art in vitro bovine organoid cell culturing systems. The platform can be used world-wide by stakeholders involved in the cattle industry (feed-/veterinary medicine industry, regulators, risk assessors). The project partners involve a strong combination of academia, knowledge institutes, small and medium enterprises, industry, branche-organisations and Proefdiervrij, all driven by their pursuit for animal free innovations.