Dienst van SURF
© 2025 SURF
There are a plethora of drivers of change in energy systems until 2015. The role of social and political actors is likely to be more noticeable. In Europe, locally, high-impact ideas like green consumerism and limited acceptance of energy systems that result in trade-offs will be important. Nationally, the empowerment of individuals and communities and the politicization of energy-related issues will be drivers of change. Internationally, energy issues will become more important in the foreign and security policies of state and non-state actors.
Alle reden om lessen te trekken uit de huidige gascrisis en aan te sturen op een energiesysteem dat veel beter bestand is tegen verrassingen
LINK
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.