Dienst van SURF
© 2025 SURF
Background: Lexical access problems of inflected verbs are common in aphasia. Previous research addressed these problems either in purely linguistic terms (e.g., verb movement) or in terms of lexical characteristics (e.g., frequency). We propose a new measure of verb complexity, which combines linguistic and lexical characteristics and is formulated in terms of Shannon’s information theory. Aims: We aim to explore the complexity of individual verbs and verb paradigms and its effect on lexical access, both in unimpaired people and people with aphasia (PWA). We apply information theory to investigate the impact of verb complexity on reaction time (RT) for lexical decision. Methods & Procedures: 20 non-fluent aphasic subjects and 11 age-matched and education-matched peers performed an auditory lexical decision task containing 286 real and 286 phonotactically legal non-word past tense forms (regulars and irregulars). RTs and error rates were measured. Two information-theoretic measures were calculated: inflectional entropy (reflecting probabilistic variability of forms within a given verbal family) and information load (I) (reflecting complexity of an individual verb form). The effect for these and other more traditional measures on RT were measured. Outcomes & Results: Linear mixed model analyses to the data for each group with participant and verb as crossed random effects were performed. Results show that for all groups inflectional entropy had a facilitatory effect on RT. There was a group effect for inflectional entropy indicating that for the patients with aphasia the effect of inflectional entropy was less pronounced. At the same time, I did correlate with latencies for healthy adults but not for individuals with aphasia. Conclusions: Our results demonstrate that the decrease in lexical processing capacity characteristic for PWA has a measurable effect that can be calculated using information theoretical means. According to our model, these individuals have particular difficulties with processing lexical items of higher complexity, as measured by individual I, and benefit less from the support normally provided (in comprehension) by other members of the corresponding lexical network. Finally, the proposed information-theoretic complexity measures, which encompass both frequency effects and linguistic parameters, provide a superior measure of lexical access, and have a better explanatory power for the analyses of access problems found in non-fluent aphasia, compared to analyses based on frequency only.
LINK
Differences in the oscillatory EEG dynamics of reading open class (OC) and closed class (CC) words have previously been found (Bastiaansen et al., 2005) and are thought to reflect differences in lexical-semantic content between these word classes. In particu-lar, the theta-band (4-7 Hz) seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underly-ing retrieval for the two different classes of words. Older participants (mean age 55) read words presented in either syntactically correct sentences or in a scrambled order ("scram-bled sentence") while their EEG was recorded. We performed time-frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8-12 Hz) band between 200-700 ms for the OC compared to CC words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13-18 Hz) bands between 0 and 700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indi-rect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha-band.
MULTIFILE
Particle verbs (e.g., look up) are lexical items for which particle and verb share a single lexical entry. Using event-related brain potentials, we examined working memory and long-term memory involvement in particle-verb processing. Dutch participants read sentences with head verbs that allow zero, two, or more than five particles to occur downstream. Additionally, sentences were presented for which the encountered particle was semantically plausible, semantically implausible, or forming a non-existing particle verb. An anterior negativity was observed at the verbs that potentially allow for a particle downstream relative to verbs that do not, possibly indexing storage of the verb until the dependency with its particle can be closed. Moreover, a graded N400 was found at the particle (smallest amplitude for plausible particles and largest for particles forming non-existing particle verbs), suggesting that lexical access to a shared lexical entry occurred at two separate time points.
LINK