Dienst van SURF
© 2025 SURF
Het veranderende klimaat is vooral in binnensteden zichtbaar door de hoge mate van verstening die hier te vinden is. Juist op deze plekken zijn er weinig oplossingen voor hittestress en wateroverlast mogelijk, omdat de ruimte boven en onder de grond vaak beperkt is. In dit onderzoek werkten de Hanzehogeschool en The Leaf vof in een consortium met ondernemers en publieke organisaties aan het ontwikkelen van een oplossing voor deze problemen: de Leaf. Een ‘Leaf’ is een groene pergola die meerdere thema’s als hittestress, wateroverlast, biodiversiteit en circulariteit combineert in één oplossing. Het primaire doel van dit onderzoek was om de effectiviteit, haalbaarheid en rendabiliteit van een Leaf in de praktijk te toetsen. Daarvoor is een design thinking aanpak gevolgd, waarin verschillende methoden zijn gebruikt om onderzoeks- en ontwerpstappen te doorlopen. De uiteindelijke ontwerpen zijn uitgewerkt in fysieke prototypes met verschillende karakteristieken die vervolgens op hun effectiviteit zijn getest en vergeleken. Het onderzoek is met een interdisciplinair team van studenten en onderzoekers uitgevoerd, met ondersteuning van verschillende experts uit de praktijk.
MULTIFILE
Purpose/objective: Stereotactic radiosurgery of brain metastases requires highly conformal dose distributions. Besides beams setup, characteristics of the linear accelerator collimator may also play a role. In this study we compared the impact of leaf width on the dose outside the target for stereotactic radiosurgery of single brain metastases. Results: The mean dose was evaluated in the first 2 rings of 5 mm around the PTV(table 1). The difference in mean dose for the small lesions(Dpres=24 Gy) of the first ring of 5 mm is 1.8 Gy in favor of the Agility and 0.9 Gy for the larger lesions(Dpres=18 Gy)also in favor of the Agility. The difference is smaller for the larger lesions (figure1). Also for the second ring of 5 mm, adjacent to the first ring, the difference is is 1.1 Gy vs 0.8 Gy also in favor of the Agility. Conclusion: For the small lesions with a volume smaller than 4 cm³ the Agility shows a steeper gradient in the two surrounding rings than the MLCi1. Therefore we recommend the use of the Agility for treating the smaller lesions.
In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility(™)) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution measurements with sub-millimeter accuracy.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
Nederlandse glastuinbouwbedrijven, onderzoekers en technologie spelen een grote rol in de voedselvoorziening wereldwijd. De productiviteit ligt hier door de kennis en kunde hoog, met een kleine footprint in vergelijking met producenten in andere landen. Met de huidige bevolkingsgroei en druk op veilige en duurzame voedselvoorziening in het achterhoofd, leveren onderzoekers en ondernemers een versterking van de glastuinbouwsector. De inzet van sensoren, data en data-analyse is gewenst om groei en opbrengst beter te monitoren, ziektes beter te bestrijden, en de footprint verder te verkleinen. Nederlandse telers zijn proeftuinen voor deze innovaties: zij experimenteren als eerste, om technologieën of methoden toe te kunnen passen en tegen lagere kosten meer te produceren. Innovatieagenda’s van betrokken topsectoren dragen sterk bij aan deze ontwikkelingen. Dit project stelt data over de plant centraal. Nu heeft een teler data over zijn klimaat, hij of zij ziet zelf iets met de plant gebeuren en past dan klimaat aan. Dit project zorgt voor meer data over de plant zelf, zodat de telers de teelt directer kunnen aansturen, met betere opbrengst en lagere kosten tot gevolg. In dit project wil het consortium van onderzoekers en ondernemers een grote stap zetten naar grootschalige toepassing van sensortechnologie voor het volgen van gewasgroei. Daarvoor moeten te ontwikkelen sensoren zowel low-cost als nauwkeurig zijn. Daarnaast is draadloos en contactloos werken van groot belang. De belangrijkste te meten parameters zijn de kopdikte van het gewas en de Leaf Area Index. Beide parameters samen zeggen iets over de sapstroom en de sapstroom is de belangrijkste parameter voor de groei van het gewas. Dit project is een vliegwiel voor technologieontwikkeling. Resultaten van het onderzoek en de ontwikkeling, met toeleveranciers, kwekers en veredelaars samen, kunnen na dit proeftuin-stadium de technologie verder brengen, vooral naar het buitenland, waar de vraag naar Nederlandse kennis en expertise alsmaar groter wordt.
In dit onderzoek werken de Hanzehogeschool Groningen en The Leaf samen aan het ontwikkelen en testen van een oplossing voor klimaatproblemen in (binnen)steden. Een ‘Leaf’ is een groene pergola die op meerdere thema’s als hittestress, wateroverlast, biodiversiteit en circulariteit inspeelt. Doel van dit onderzoek is om de effectiviteit, haalbaarheid en rendabiliteit van een Leaf in de praktijk te toetsen. Centraal in dit onderzoek staat het ontwikkelen van meerdere prototypes met verschillende karakteristieken, en deze met verschillende onderzoeksmethodes testen en vergelijken. Het onderzoek wordt met een interdisciplinair team van studenten en onderzoekers en ondersteuning van verschillende experts uit de praktijk uitgevoerd.