Dienst van SURF
© 2025 SURF
The user experience of our daily interactions is increasingly shaped with the aid of AI, mostly as the output of recommendation engines. However, it is less common to present users with possibilities to navigate or adapt such output. In this paper we argue that adding such algorithmic controls can be a potent strategy to create explainable AI and to aid users in building adequate mental models of the system. We describe our efforts to create a pattern library for algorithmic controls: the algorithmic affordances pattern library. The library can aid in bridging research efforts to explore and evaluate algorithmic controls and emerging practices in commercial applications, therewith scaffolding a more evidence-based adoption of algorithmic controls in industry. A first version of the library suggested four distinct categories of algorithmic controls: feeding the algorithm, tuning algorithmic parameters, activating recommendation contexts, and navigating the recommendation space. In this paper we discuss these and reflect on how each of them could aid explainability. Based on this reflection, we unfold a sketch for a future research agenda. The paper also serves as an open invitation to the XAI community to strengthen our approach with things we missed so far.
MULTIFILE
This exploratory study investigates the rationale behind categorizing algorithmic controls, or algorithmic affordances, in the graphical user interfaces (GUIs) of recommender systems. Seven professionals from industry and academia took part in an open card sorting activity to analyze 45 cards with examples of algorithmic affordances in recommender systems’ GUIs. Their objective was to identify potential design patterns including features on which to base these patterns. Analyzing the group discussions revealed distinct thought processes and defining factors for design patterns that were shared by academic and industry partners. While the discussions were promising, they also demonstrated a varying degree of alignment between industry and academia when it came to labelling the identified categories. Since this workshop is part of the preparation for creating a design pattern library of algorithmic affordances, and since the library aims to be useful for both industry and research partners, further research into design patterns of algorithmic affordances, particularly in terms of labelling and description, is required in order to establish categories that resonate with all relevant parties
LINK
In flexible education, recommender systems that support course selection, are considered a viable means to help students in making informed course selections, especially where curricula offer greater flexibility. However, these recommender systems present both potential benefits and looming risks, such as overdependence on technology, biased recommendations, and privacy issues. User control mechanisms in recommender interfaces (or algorithmic affordances) might offer options to address those risks, but they have not been systematically studied yet. This paper presents the outcomes of a design session conducted during the INTERACT23 workshop on Algorithmic Affordances in Recommender Interfaces. This design session yielded insights in how the design of an interface, and specifically the algorithmic affordances in these interfaces, may address the ethical risks and dilemmas of using a recommender in such an impactful context by potentially vulnerable users. Through design and reflection, we discovered a host of design ideas for the interface of a flexible education interface, that can serve as conversation starters for practitioners implementing flexible education. More research is needed to explore these design directions and to gain insights on how they can help to approximate more ethically operating recommender systems.
LINK