Dienst van SURF
© 2025 SURF
In tourism and recreation management it is still common practice to apply traditional input-output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input-output (NLIO) model, in which price-induced input substitution is accounted for. For large changes in final demand, a NLIO model is more useful than a traditional IO model, leading to higher or lower impacts. For small changes in final demand input substitution is less likely. In that case the application of the NLIO may lead to the same results as a traditional IO model. To analyse changes of subsidies, a traditional IO model is not an option. A more flexible model, such as the NLIO, is required. The NLIO model forces researchers to make choices about capacity constraints, factor mobility and the substitution elasticity, which can be difficult but create flexibility and allow for more realism.
LINK
In tourism and recreation management it is still common practice to apply traditional input-output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input-output (NLIO) model, in which price-induced input substitution is accounted for. For large changes in final demand, a NLIO model is more useful than a traditional IO model, leading to higher or lower impacts. For small changes in final demand input substitution is less likely. In that case the application of the NLIO may lead to the same results as a traditional IO model. To analyse changes of subsidies, a traditional IO model is not an option. A more flexible model, such as the NLIO, is required. The NLIO model forces researchers to make choices about capacity constraints, factor mobility and the substitution elasticity, which can be difficult but create flexibility and allow for more realism.
LINK
Background: The substitution of healthcare is a way to control rising healthcare costs. The Primary Care Plus (PC+) intervention of the Dutch ‘Blue Care’ pioneer site aims to achieve this feat by facilitating consultations with medical specialists in the primary care setting. One of the specialties involved is dermatology. This study explores referral decisions following dermatology care in PC+ and the influence of predictive patient and consultation characteristics on this decision. Methods: This retrospective study used clinical data of patients who received dermatology care in PC+ between January 2015 and March 2017. The referral decision following PC+, (i.e., referral back to the general practitioner (GP) or referral to outpatient hospital care) was the primary outcome. Stepwise logistic regression modelling was used to describe variations in the referral decisions following PC+, with patient age and gender, number of PC+ consultations, patient diagnosis and treatment specialist as the predicting factors. Results: A total of 2952 patients visited PC+ for dermatology care. Of those patients with a registered referral, 80.2% (N = 2254) were referred back to the GP, and 19.8% (N = 558) were referred to outpatient hospital care. In the multivariable model, only the treating specialist and patient’s diagnosis independently influenced the referral decisions following PC+. Conclusion: The aim of PC+ is to reduce the number of referrals to outpatient hospital care. According to the results, the treating specialist and patient diagnosis influence referral decisions. Therefore, the results of this study can be used to discuss and improve specialist and patient profiles for PC+ to further optimise the effectiveness of the initiative.