Dienst van SURF
© 2025 SURF
In the digital era, an innovative capability is viewed as core to the competitiveness of a firm. Firms can increase their innovative capability by taking advantage of individual innovative behavior. Thus, it is crucial to find out which individual and/or contextual factors promote individual innovative behavior at work. In response to promoting individual innovative behavior innovation, perceived entrepreneurial orientation of firms, perceived innovative climate, digital maturity and self-leadership may motivate individuals to engage in innovative behavior in the workplace. Therefore, this research seeks to gain a better understanding of how perceived entrepreneurial orientation of firms, perceived innovative climate, digital maturity, and self-leadership influence individual innovative behavior in the banking sector. A questionnaire survey was conducted and 125 valid replies were received. The results of this study indicate that employees working in the banking industry, which have a high digital maturity, are more likely to engage in innovative behavior when firms support entrepreneurial orientated strategies, an innovative climate, and when employees adopt self-leadership skills.
Innovative work behavior has been one of the essential attribute of high performing firms, and the roles of entrepreneurial orientation and self-leadership have been important for promoting innovative work behavior. This study advances research on innovative work behavior by examining the mediating role of self-leadership in the relationship between perceived entrepreneurial orientation and innovative work behavior. Structural equation modelling is employed to analyze data from a survey of 404 employees in banking sector. The results of reliability measures and confirmatory factor analysis strongly support the scale of the study. The results from an empirical survey study in the deposit banks reveal that participants’ perceptions about high levels of entrepreneurial orientation have a positive impact on innovative work behavior. The results also provide support for the full mediating role of self-leadership in the relationship between participants’ perceptions of entrepreneurial orientation and innovative work behavior. Additionally, this study provides some implications for practitioners in the banking sector to facilitate innovative work behavior through entrepreneurial orientation and self- leadership.
In this mixed methods study, a moderated mediation model predicting effects of leader-member exchange (LMX) and organizational citizenship behaviors (OCB) on innovative work behaviors, with employability as a mediator, has been tested. Multi-source data from 487 pairs of employees and supervisors working in 151 small and medium-sized enterprises (SMEs) supported our hypothesized model. The results of structural equation modelling provide support for our model. In particular, the benefits of close relationships and high-quality exchanges between employee and supervisor (LMX), and fostering individual development as a result of employees’ OCB have an indirect effect on innovative work behaviors through positive effects on workers’ employability. Innovative work behaviors depend on employees’ knowledge, skills, and expertise. In other words, enhancing workers’ employability nurtures innovative work behaviors. In addition, we found a moderation effect of organizational politics on the relationship between employability and innovative work behaviors. Secondly, qualitative methods focusing on experiences of the antecedents and outcomes of employability were used to complement our quantitative results. All in all, this study has important consequences for managerial strategies and practices in SMEs and call for an awareness of the dysfunctional effect of perceived organizational politics.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Movebite aims to combat the issue of sedentary behavior prevalent among office workers. A recent report of the Nederlandse Sportraad reveal a concerning trend of increased sitting time among Dutch employees, leading to a myriad of musculoskeletal discomforts and significant health costs for employers due to increased sick leave. Recognizing the critical importance of addressing prolonged sitting in the workplace, Movebite has developed an innovative concept leveraging cutting-edge technology to provide a solution. The Movebite app seamlessly integrates into workplace platforms such as Microsoft Teams and Slack, offering a user-friendly interface to incorporate movement into their daily routines. Through scalable AI coaching and real-time movement feedback, Movebite assists individuals in scheduling and implementing active micro-breaks throughout the workday, thereby mitigating the adverse effects of sedentary behavior. In collaboration with the Avans research group Equal Chance on Healthy Choices, Movebite conducts user-centered testing to refine its offerings and ensure maximum efficacy. This includes testing initiatives at sports events, where the diverse crowd provides invaluable feedback to fine-tune the app's features and user experience. The testing process encompasses both quantitative and qualitative approaches based on the Health Belief Model. Through digital questionnaires, Movebite aims to gauge users' perceptions of sitting as a health threat and the potential benefits of using the app to alleviate associated risks. Additionally, semi-structured interviews delve deeper into user experiences, providing qualitative insights into the app's usability, look, and feel. By this, Movebite aims to not only understand the factors influencing adoption but also to tailor its interventions effectively. Ultimately, the goal is to create an environment encouraging individuals to embrace physical activity in small, manageable increments, thereby fostering long-term engagement promoting overall well-being.Through continuous innovation and collaboration with research partners, Movebite remains committed to empowering individuals to lead healthier, more active lifestyles, one micro-break at a time.
Despite the benefits of the widespread deployment of diverse Internet-enabled devices such as IP cameras and smart home appliances - the so-called Internet of Things (IoT) has amplified the attack surface that is being leveraged by cyber criminals. While manufacturers and vendors keep deploying new products, infected devices can be counted in the millions and spreading at an alarming rate all over consumer and business networks. The objective of this project is twofold: (i) to explain the causes behind these infections and the inherent insecurity of the IoT paradigm by exploring innovative data analytics as applied to raw cyber security data; and (ii) to promote effective remediation mechanisms that mitigate the threat of the currently vulnerable and infected IoT devices. By performing large-scale passive and active measurements, this project will allow the characterization and attribution of compromise IoT devices. Understanding the type of devices that are getting compromised and the reasons behind the attacker’s intention is essential to design effective countermeasures. This project will build on the state of the art in information theoretic data mining (e.g., using the minimum description length and maximum entropy principles), statistical pattern mining, and interactive data exploration and analytics to create a casual model that allows explaining the attacker’s tactics and techniques. The project will research formal correlation methods rooted in stochastic data assemblies between IoT-relevant measurements and IoT malware binaries as captured by an IoT-specific honeypot to aid in the attribution and thus the remediation objective. Research outcomes of this project will benefit society in addressing important IoT security problems before manufacturers saturate the market with ostensibly useful and innovative gadgets that lack sufficient security features, thus being vulnerable to attacks and malware infestations, which can turn them into rogue agents. However, the insights gained will not be limited to the attacker behavior and attribution, but also to the remediation of the infected devices. Based on a casual model and output of the correlation analyses, this project will follow an innovative approach to understand the remediation impact of malware notifications by conducting a longitudinal quasi-experimental analysis. The quasi-experimental analyses will examine remediation rates of infected/vulnerable IoT devices in order to make better inferences about the impact of the characteristics of the notification and infected user’s reaction. The research will provide new perspectives, information, insights, and approaches to vulnerability and malware notifications that differ from the previous reliance on models calibrated with cross-sectional analysis. This project will enable more robust use of longitudinal estimates based on documented remediation change. Project results and methods will enhance the capacity of Internet intermediaries (e.g., ISPs and hosting providers) to better handle abuse/vulnerability reporting which in turn will serve as a preemptive countermeasure. The data and methods will allow to investigate the behavior of infected individuals and firms at a microscopic scale and reveal the causal relations among infections, human factor and remediation.