Dienst van SURF
© 2025 SURF
Introduction: Patients with cancer receiving radio- or chemotherapy undergo many immunological stressors. Chronic regular exercise has been shown to positively influence the immune system in several populations, while exercise overload may have negative effects. Exercise is currently recommended for all patients with cancer. However, knowledge regarding the effects of exercise on immune markers in patients undergoing chemo- or radiotherapy is limited. The aim of this study is to systematically review the effects of moderate- and high-intensity exercise interventions in patients with cancer during chemotherapy or radiotherapy on immune markers. Methods: For this review, a search was performed in PubMed and EMBASE, until March 2023. Methodological quality was assessed with the PEDro tool and best-evidence syntheses were performed both per immune marker and for the inflammatory profile. Results: Methodological quality of the 15 included articles was rated fair to good. The majority of markers were unaltered, but observed effects included a suppressive effect of exercise during radiotherapy on some proinflammatory markers, a preserving effect of exercise during chemotherapy on NK cell degranulation and cytotoxicity, a protective effect on the decrease in thrombocytes during chemotherapy, and a positive effect of exercise during chemotherapy on IgA. Conclusion: Although exercise only influenced a few markers, the results are promising. Exercise did not negatively influence immune markers, and some were positively affected since suppressed inflammation might have positive clinical implications. For future research, consensus is needed regarding a set of markers that are most responsive to exercise. Next, differential effects of training types and intensities on these markers should be further investigated, as well as their clinical implications.
From teh UU repository: "Background: Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients. However, there are some concerns regarding its safety and long-term efficacy. The use of non-digestible oligosaccharides might improve OIT efficacy since they are known to directly modulate intestinal epithelial and immune cells in addition to acting as prebiotics. Aim: To investigate whether a diet supplemented with plant-derived fructo-oligosaccharides (FOS) supports the efficacy of OIT in a murine cow's milk allergy model and to elucidate the potential mechanisms involved. Methods: After oral sensitization to the cow's milk protein whey, female C3H/HeOuJ mice were fed either a control diet or a diet supplemented with FOS (1% w/w) and received OIT (10 mg whey) 5 days a week for 3 weeks by gavage. Intradermal (i.d.) and intragastric (i.g.) challenges were performed to measure acute allergic symptoms and mast cell degranulation. Blood and organs were collected to measure antibody levels and T cell and dendritic cell populations. Spleen-derived T cell fractions (whole spleen-and CD25-depleted) were transferred to naive recipient mice to confirm the involvement of regulatory T cells (Tregs) in allergy protection induced by OIT + FOS. Results: OIT + FOS decreased acute allergic symptoms and mast cell degranulation upon challenge and prevented the challenge-induced increase in whey-specific IgE as observed in sensitized mice. Early induction of Tregs in the mesenteric lymph nodes (MLN) of OIT + FOS mice coincided with reduced T cell responsiveness in splenocyte cultures. CD25 depletion in OIT + FOS-derived splenocyte suspensions prior to transfer abolished protection against signs of anaphylaxis in recipients. OIT + FOS increased serum galectin-9 levels. No differences in short-chain fatty acid (SCFA) levels in the cecum were observed between the treatment groups. Concisely, FOS supplementation significantly improved OIT in the acute allergic skin response, %Foxp3+ Tregs and %LAP+ Th3 cells in MLN, and serum galectin-9 levels. Conclusion: FOS supplementation improved the efficacy of OIT in cow's milk allergic mice. Increased levels of Tregs in the MLN and abolished protection against signs of anaphylaxis upon transfer of CD25-depleted cell fractions, suggest a role for Foxp3+ Tregs in the protective effect of OIT + FOS. "
LINK
Low-grade inflammation and metabolic syndrome are seen in many chronic diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). Lifestyle interventions which combine different non-pharmacological therapies have shown synergizing effects in improving outcomes in patients with other chronic diseases or increased risk thereof, especially cardiovascular disease. For RA and metabolic syndrome-associated OA (MSOA), whole food plant-based diets (WFPDs) have shown promising results. A WFPD, however, had not yet been combined with other lifestyle interventions for RA and OA patients. In this protocol paper, we therefore present Plants for Joints, a multidisciplinary lifestyle program, based on a WFPD, exercise, and stress management. The objective is to study the effect of this program on disease activity in patients with RA (randomized controlled trial [RCT] 1), on a risk score for developing RA in patients with anti-citrullinated protein antibody (ACPA) positive arthralgia (RCT 2) and on pain, stiffness, and function in patients with MSOA (RCT 3), all in comparison with usual care.We designed three 16-week observer-blind RCTs with a waiting-list control group for patients with RA with low to moderate disease activity (2.6 ≤ Disease Activity Score [DAS28] ≤ 5.1, RCT 1, n = 80), for patients at risk for RA, defined by ACPA-positive arthralgia (RCT 2, n = 16) and for patients with metabolic syndrome and OA in the knee and/or hip (RCT 3, n = 80). After personal counseling on diet and exercise, participants join 10 group meetings with 6-12 other patients to receive theoretical and practical training on a WFPD, exercise, and stress management, while medication remains unchanged. The waiting-list control group receives usual care, while entering the program after the RCT. Primary outcomes are: difference in mean change between intervention and control groups within 16 weeks for the DAS28 in RA patients (RCT 1), the RA-risk score for ACPA positive arthralgia patients (RCT 2), and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) score for MSOA patients (RCT 3). Continued adherence to the lifestyle program is measured in a two-year observational extension study.