Dienst van SURF
© 2025 SURF
Aim: To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. Methods: Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. Results: Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. Conclusions: Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies. sa
Apart from tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), a third PA appears to occur in human plasma. Its activity is initiated when appropriate triggers of the contact system are added, and the activation depends on the presence of factor XII and prekallikrein in plasma. The activity of this, so-called, contact-system dependent PA accounts for 30% of the PA activity in the dextran sulphate euglobulin fraction of plasma and was shown not to be an intrinsic property of one of the contact-system components, nor could it be inhibited by inhibitory antibodies against t-PA or u-PA. We have succeeded in identifying this third PA in dextran sulphate euglobulin fractions of human plasma. Its smallest unit (SDS-PAGE) is an inactive 110 kDa single-chain polypeptide which upon activation of the contact system is converted to a cleaved, disulphide-bridged molecule with PA activity. The native form, presumably, is an oligomer, since the apparent Mr on gel-chromatography is 600,000. The IEP is 4.8, much lower than that of t-PA and u-PA. Although the active 110 kDa polypeptide cannot be inhibited by anti-u-PA, it yet comprises a 37 kDa piece with some u-PA related antigenic determinants. However, these determinants are in a latent or cryptic form, only detectable after denaturation by SDS. The 110 kDa polypeptide is evidently not a dimer of 55 kDa u-PA or a complex of u-PA with an inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)
LINK