Abstract: Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. Key points: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.
The proposed bi-functional protective structure intended to have hydrophilic interior towards the skin surface and hydrophobic exterior for protection, ensuring fast transfer of moisture between body and external environment. The sandwich structure is prepared using 100% wool jersey and varieties of 100% polyester fabrics. Hydrophilic treatments were given using cutinase (fusarium solani pisi) enzyme and commercial hydrophilic softener Ruco Pur Sly®. The polyester fabrics were given a hydrophobic treatment with Ruco Dry Eco® - a commercial cationic water repellent preparation. Variables include enzyme treatment time, and change in pressure to achieve suitable wet pick up at foulard. Several wool-polyester sandwich structures with optimum hydrophilic/hydrophobic properties were made by thermal adhesion using thin polyamide layer. Drop test and vapour permeability test were conducted to evaluate wetting properties and breathability of the samples. Sandwich structure comprising hydrophilic wool-jersey and hydrophobic PES spacer fabric showed the highest value for water vapour permeability. Paper written by the Saxion chair Smart Functional Materials and the Technical University of Iasi, Romania, for and accepted by the Autex Conference 2013.
MULTIFILE
The proposed bi-functional protective structure intended to have hydrophilic interior towards the skin surface and hydrophobic exterior for protection, ensuring fast transfer of moisture between body and external environment. The sandwich structure is prepared using 100% wool jersey and varieties of 100% polyester fabrics. Hydrophilic treatments were given using cutinase (fusarium solani pisi) enzyme and commercial hydrophilic softener Ruco Pur Sly®. The polyester fabrics were given a hydrophobic treatment with Ruco Dry Eco® - a commercial cationic water repellent preparation. Variables include enzyme treatment time, and change in pressure to achieve suitable wet pick up at foulard. Several wool-polyester sandwich structures with optimum hydrophilic/hydrophobic properties were made by thermal adhesion using thin polyamide layer. Drop test and vapour permeability test were conducted to evaluate wetting properties and breathability of the samples. Sandwich structure comprising hydrophilic wool-jersey and hydrophobic PES spacer fabric showed the highest value for water vapour permeability. Paper written by the Saxion chair Smart Functional Materials and the Technical University of Iasi, Romania, for and accepted by the Autex Conference 2013.
MULTIFILE
Dit projectvoorstel is gericht op de ontwikkeling van nieuwe moleculen om zelf, thuis infectieziekten te diagnosticeren. Om de diagnose van infectieziektes te bevorderen, met name in afgelegen gebieden, is de innovatieve strategie van point-of-care (POC), een snelle, accurate en sensitieve diagnostische test die door een patiënt zelf kan worden uitgevoerd, uitermate geschikt. Een simpel en klein toestel dat enzymatische activiteit uit microben kan meten is in ontwikkeling bij Enzyre B.V. Dit voorstel gaat over de ontwikkeling van nieuwe lichtgevende moleculen die de detectie van infectieziektes kunnen aantonen door middel van het Enzyre platform. Hiervoor wordt een nieuwe chemisch aanpak om dit soort lichtgevende moleculen te maken ontwikkeld. Dit is relevant voor de preventie en het monitoren controle van potentiële pandemieën zoals bijvoorbeeld de recente uitbraak van SARS-Cov-2, maar ook MERS, SARS, HIV, Ebola en meerdere influenza pandemieën uit het verleden
About 35-40 kton used mattresses available yearly for the recycling only in the Netherlands. Mattresses that are offered at recycling companies, municipal yards and retailers often find their way to incinerators. However, several fraction components of used mattresses can be reused/resale in a useful manner. One of the mattress fractions is textile cover with residue of Polyurethane (PU) foam. Effective removal of PU foam would enable further reuse of textile materials. Use of harsh chemicals/ thermo-, photo-, oxidative, processes including hydrolysis, aminolysis, phosphorolysis, glycolysis etc [1,2] for PU foam degradation is not a good solution, since it will cause non-specific damage to textiles and other parts, making recycle/ reuse difficult. Therefore, Mattress Recycling Europe BV (MRE) is looking for an eco-friendly mild process for selective degradation of PU foam component. PU is a mixed polymer; therefore, it is important to establish the physio-chemical nature of PU before identifying suitable and sustainable degradation route. The proposed solution is selective degradation of PU polymer using biotechnology. Enzymatic bio-catalysis enables a targeted, specific reaction at mild process conditions (pH, temperature) without harming other components in the process. Primarily hydrolase class of enzymes is assumed to be among the most effective options for the proposed degradation of PU foam residue [3,4]. From previous research, adding mechanical shear provides a synergistic effect for enzyme catalysed reaction [5-7]. Therefore, within the scope of this exploratory practice-oriented project, technical feasibility of bio-catalyst and shear (including well established PU degradation techniques) towards the selective degradation of PU foam residue attached to textile part from used mattresses will be explored together with cost estimation of the overall process and re-usability of enzymes using suitable immobilisation technique, addressing an urgent industrial need in the field of green chemistry.