Dienst van SURF
© 2025 SURF
Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.
The concept of human-computer integration (HInt) is entering a new evolutionary phase, that leads to a paradigm shift from interaction to the integration of computing devices with the human body (Farooq & Grudin, 2017). This embodied integration, where a computer tightly integrates with the human body (Mueller, Maes & Grudin, 2019), engages the human being in mutual give-and-take relationships with computational systems. The paradigm shift in human-computer integration might have more to do with ‘becoming-in-the-world’ (Shildrick, 2022) than with ‘being-in-the-world’ requires a rethinking in the philosophy on the human body and its technological intertwining. Our research project starts from the belief that new insight and meanings on bodily understanding in the context of Human-Computer Integration can only be achieved through a creative and artistic exploration of the ‘lived experience’ of disabled bodies. In this project, research activities will be grounded in feminist philosophy and performed into the context of disability, yet the methodological approach of exploring the ‘felt sense’ and ‘kinaesthetics’ of the disability materiality takes place through performative design practice at the intersection of the HCI-related research fields of Soma Design (Höök, 2018) and Somaesthetics (Shusterman, 2008), as well as artistic disciplines, such as Musicology and Music Therapy, Dance and Dance Movement Therapy, Disability Arts and Critical Disability Studies. This paper starts with an explanation of the current research situation, and then provides background information on the different schools of thought that are present in the project. It continues with describing the research goals, methods, and research questions. The final part of the paper consists of an overview of three preliminary studies which explore human-computer relationships through the combination of performative practice and cyber-physical demonstrators, created by bachelor-students ‘Communication and Multimedia Design’ at Amsterdam University of Applied Sciences in The Netherlands and master-students ‘Web, Communication, and Information Systems’ at the Fachhochschule Kufstein in Austria. The takeaway message of this paper is that to advance our understandings of human-computer integration, we must consider a perspectivist viewpoint to develop alternative ways for exploring the bodily complexities of human-computer integration. We further argue that disability can be a catalyst for innovation and life-changing design in health and well-being, as it automatically emphasises the need for engaging with ‘being human’ in the context of the human-computer relationship. This PhD-project is productively looking for new forms of studying the context of disability, to unveil, excavate and expose knowledge for human- computer integration (HInt) that would otherwise be overlooked in the HCI-community.
This paper explores the intersection of Human-Comput- er Integration (HInt) and Critical Disability Studies (CDS) to explore how a posthumanistic epistemology in design can produce knowledge and know-how for the application do- mains of Health and Well-being. To use disability as a catalyst for innovation, a rethinking in the philosophy of sciences is necessary to establish knowledge production that emerges from new fluid politics that operate in ‘composition’ instead of ‘organization’. By placing an emphasis on nomadic practic- es that move beyond fixed borders, the encounters between Disability Studies or Human-Computer Integration can pro- duce situated, embodied and contingent design knowledge that study deviant and complex embodiment, and the kinds of alterations of human characteristics and abilities through technology. The first section of this paper explores the re- thinking in the philosophy of sciences. The second section ar- gues for a posthumanistic epistemology in design, which can be seen as the perfect way to produce situated, embodied and contingent design knowledge on the intersection of HInt and CDS. The final section of this paper highlights the poten- tial for the disciplines of Somatechnics and Soma Design to engage in each other’s body of knowledge to produce trans- formative knowledge through a shared focus on deviant em- bodiment and disability. The takeaway message of this paper is that the intersection of HInt and CDS potentially leads to new – otherwise overlooked - insights on the human-technol- ogy relationship, and therefore can take part in the historical strive for man-machine symbiosis. The posthumanist episte- mology allows for alternative ways of thinking that move be- yond the current Humanist perspective, and builds on a plu- ral, relational and expansive foundation for the development of design practices that catalyze innovation in the application domains of Health and Well-being.
Our unilateral diet has resulted in a deficiency of specific elements/components needed for well-functioning of the human body. Especially the element magnesium is low in our processed food and results in neuronal and muscular malfunctioning, problems in bone heath/strength, and increased chances of diabetes, depression and cardiovascular diseases. Furthermore, it has also been recognized that magnesium plays an important role in cognitive functioning (impairment and enhancement), especially for people suffering from neurodegenerative diseases (Parkinson disease, Alzheimer, etc). Recently, it has been reported that magnesium addition positively effects sleep and calmness (anti-stress). In order to increase the bioavailability of magnesium cations, organic acids such as citrate, glycerophosphate and glycinate are often used as counterions. However, the magnesium supplements that are currently on the market still suffer from low bio-availability and often do not enter the brain significantly.The preparation of dual/multiple ligands of magnesium in which the organic acid not only functions as a carrier but also has synergistically/complementary biological effects is widely unexplored and needs further development. As a result, there is a strong need for dual/multiple magnesium supplements that are non-toxic, stable, prepared via an economically and ecologically attractive route, resulting in high bioavailability of magnesium in vivo, preferably positively influencing cognition/concentration
Alcohol use disorder (AUD) is a major problem. In the USA alone there are 15 million people with an AUD and more than 950,000 Dutch people drink excessively. Worldwide, 3-8% of all deaths and 5% of all illnesses and injuries are attributable to AUD. Care faces challenges. For example, more than half of AUD patients relapse within a year of treatment. A solution for this is the use of Cue-Exposure-Therapy (CET). Clients are exposed to triggers through objects, people and environments that arouse craving. Virtual Reality (VRET) is used to experience these triggers in a realistic, safe, and personalized way. In this way, coping skills are trained to counteract alcohol cravings. The effectiveness of VRET has been (clinically) proven. However, the advent of AR technologies raises the question of exploring possibilities of Augmented-Reality-Exposure-Therapy (ARET). ARET enjoys the same benefits as VRET (such as a realistic safe experience). But because AR integrates virtual components into the real environment, with the body visible, it presumably evokes a different type of experience. This may increase the ecological validity of CET in treatment. In addition, ARET is cheaper to develop (fewer virtual elements) and clients/clinics have easier access to AR (via smartphone/tablet). In addition, new AR glasses are being developed, which solve disadvantages such as a smartphone screen that is too small. Despite the demand from practitioners, ARET has never been developed and researched around addiction. In this project, the first ARET prototype is developed around AUD in the treatment of alcohol addiction. The prototype is being developed based on Volumetric-Captured-Digital-Humans and made accessible for AR glasses, tablets and smartphones. The prototype will be based on RECOVRY, a VRET around AUD developed by the consortium. A prototype test among (ex)AUD clients will provide insight into needs and points for improvement from patient and care provider and into the effect of ARET compared to VRET.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.