Dienst van SURF
© 2025 SURF
De Regiegroep van de topsector Life Sciences & Health wil een impuls geven aan initiatieven die praktijkgericht onderzoek op het gebied van Health betreffen. De redenen hiervoor zijn de relatief bescheiden positie van Health vergeleken bij de Life Sciences in de eerdere agendering onder de topsector en de verwachting dat praktijkgericht onderzoek door hogescholen een substantiële bijdrage kan leveren aan de doelstellingen onder het topsectorenbeleid. Daarom is opdracht gegeven tot het opstellen van een agenda voor praktijkgericht onderzoek “Health”. Deze agenda moet leiden tot samenwerking met een solide economische component tussen hogescholen, eventuele andere kennisinstellingen en publieke en private partijen uit de beroepspraktijk. De Agenda Praktijkgericht Onderzoek Health is ingedeeld in vier overkoepelende thema’s (A - D) waarop het onderzoek van hogescholen zich zou moeten richten. Binnen elk thema zijn onderwerpen benoemd die op basis van deze verkenning prioriteit verdienen.
From the article: Abstract—By using agent technology, a versatile and modular monitoring system can be built. In this paper, such a multiagentbased monitoring system will be described. The system can be trained to detect several conditions in combination and react accordingly. Because of the distributed nature of the system, the concept can be used in many situations, especially when combinations of different sensor inputs are used. Another advantage of the approach presented in this paper is the fact that every monitoring system can be adapted to specific situations. As a case-study, a health monitoring system will be presented.
When firefighting, the combination of exposition to high temperatures, high physical demands and wearing (heavy and insulated) personal protective equipment lead to increased risk of heat stress and exhaustion in firefighters. Heat stress can easily evolve into a life-threatening heat stroke. Once heat stress occurred, the chance of getting another heat stroke during deployment gets higher. Moreover, intermittent exposure to heat stress over several years, is a risk factor for heart diseases. Similarly, exhausted during a deployment, a firefighter needs more time to rehabilitate before he can safely be deployed again. Heat stress and exhaustion can lead to line-of-duty cardiovascular events. Therefore preventing heat stress and exhaustion during deployment is beneficial for health, functioning and employability of firefighters. Since currently available measurement of the core temperature, such as thermometer pill or neck patch thermometer, are not reliable or practical for firefighters, an alternative approach may be used, namely, estimation of the core temperature based on non-invasive observation of the heart rate. Exhaustion is estimated using the training impulse model based on the heart rate reserve. Our achievement is a MoSeS health monitor system (as a smartphone application) that can real time analyze the health status of a firefighter and predict exhaustion and heat stress during deployment. The system is cheap (only a heart rate sensor and a smartphone application is needed), easy to use (intuitive “traffic light” signal), and objective (the health status is determined based on measurements of the heart rate). The only restriction is that the developed model is strongly dependent on personal maximum and minimum heart rate which need to be established behforehand. Moses Health Monitoring system for Firefighters CC BY-NC-ND Conference Proceedings 17th international e-SOCIETY 2019 IADIS
MULTIFILE
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Over the last couple of years there is a growing interest in the role of the bicycle in Western urban transport systems as an alternative to car use. Cycling not only has positive environmental impacts, but also positive health effects through increased physical activity. From the observation of the Urban Intelligence team that cycling data and information was limited, we have started the development of cycleprint. Cycleprint stands for Cycle Policy Renewal and INnovation by means of tracking Technology with the objective to enable more customer friendly cycle policy.The initial objective of Cycleprint was to translate GPS data into policy relevant insights to enable customer friendly cycle policy. The online toolkit what Cycleprint has become, answers the questions about:-route choice-speeds-delays at intersections -intensities Because of the success of Cycleprint in the Netherlands the range of features is still under development. As a result of the development of Cycleprint the Dutch organized the fietstelweek. In addition to Cycleprint the Urban Intelligence team developed the cyclescan to explore the effects of cycle network enhancement. The project is developed in direct collaboration with the Provincie Noord-Brabant and Metropoolregio Eindhoven to fulfill the ambition to become cycling region of the Netherlands in 2020.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.